Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator

The inverse problem of recovering the potential q ( x ) in the damped wave equation m ( x ) u t t + μ ( x ) u t = r ( x ) u x x + q ( x ) u , ( x , t ) ∈ Ω T ≔ (0, ℓ ) × (0, T ) subject to the boundary conditions u (0, t ) = ν ( t ), u ( ℓ , t ) = 0, from the Neumann boundary measured output f ( t )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2021-03, Vol.37 (3), p.35005
Hauptverfasser: Romanov, Vladimir, Hasanov, Alemdar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35005
container_title Inverse problems
container_volume 37
creator Romanov, Vladimir
Hasanov, Alemdar
description The inverse problem of recovering the potential q ( x ) in the damped wave equation m ( x ) u t t + μ ( x ) u t = r ( x ) u x x + q ( x ) u , ( x , t ) ∈ Ω T ≔ (0, ℓ ) × (0, T ) subject to the boundary conditions u (0, t ) = ν ( t ), u ( ℓ , t ) = 0, from the Neumann boundary measured output f ( t ) ≔ r (0) u x (0, t ), t ∈ (0, T ] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous.
doi_str_mv 10.1088/1361-6420/abdb41
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6420_abdb41</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6420_abdb41</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</originalsourceid><addsrcrecordid>eNo9kM1KxDAYRYMoOI7uXeYF4uRrftouZfwZYVAUXZc0-aKRtqlpZsS3lzLi6sJZXDiHkEvgV8CragVCA9Oy4CvTulbCEVn8o2Oy4IXWTGmAU3I2TZ-cA1RQLsjzC9q4xxSGd2roGDMOOZiOhoE604_o6LfZI8WvnckhDtSn2NObkIL96DCzHNkj7nozDDSOmEyO6ZyceNNNePG3S_J2d_u63rDt0_3D-nrLbCFFZs62hUTuVYsCRF2XzhTeg9JFjR5qrp00IEolvFJacS-9LEspbOus5XULYkn44demOE0JfTOm0Jv00wBv5iTN7N_M_s0hifgF_e1V4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Romanov, Vladimir ; Hasanov, Alemdar</creator><creatorcontrib>Romanov, Vladimir ; Hasanov, Alemdar</creatorcontrib><description>The inverse problem of recovering the potential q ( x ) in the damped wave equation m ( x ) u t t + μ ( x ) u t = r ( x ) u x x + q ( x ) u , ( x , t ) ∈ Ω T ≔ (0, ℓ ) × (0, T ) subject to the boundary conditions u (0, t ) = ν ( t ), u ( ℓ , t ) = 0, from the Neumann boundary measured output f ( t ) ≔ r (0) u x (0, t ), t ∈ (0, T ] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/abdb41</identifier><language>eng</language><ispartof>Inverse problems, 2021-03, Vol.37 (3), p.35005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</citedby><cites>FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</cites><orcidid>0000-0002-1886-3280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Romanov, Vladimir</creatorcontrib><creatorcontrib>Hasanov, Alemdar</creatorcontrib><title>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</title><title>Inverse problems</title><description>The inverse problem of recovering the potential q ( x ) in the damped wave equation m ( x ) u t t + μ ( x ) u t = r ( x ) u x x + q ( x ) u , ( x , t ) ∈ Ω T ≔ (0, ℓ ) × (0, T ) subject to the boundary conditions u (0, t ) = ν ( t ), u ( ℓ , t ) = 0, from the Neumann boundary measured output f ( t ) ≔ r (0) u x (0, t ), t ∈ (0, T ] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous.</description><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAYRYMoOI7uXeYF4uRrftouZfwZYVAUXZc0-aKRtqlpZsS3lzLi6sJZXDiHkEvgV8CragVCA9Oy4CvTulbCEVn8o2Oy4IXWTGmAU3I2TZ-cA1RQLsjzC9q4xxSGd2roGDMOOZiOhoE604_o6LfZI8WvnckhDtSn2NObkIL96DCzHNkj7nozDDSOmEyO6ZyceNNNePG3S_J2d_u63rDt0_3D-nrLbCFFZs62hUTuVYsCRF2XzhTeg9JFjR5qrp00IEolvFJacS-9LEspbOus5XULYkn44demOE0JfTOm0Jv00wBv5iTN7N_M_s0hifgF_e1V4Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Romanov, Vladimir</creator><creator>Hasanov, Alemdar</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1886-3280</orcidid></search><sort><creationdate>20210301</creationdate><title>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</title><author>Romanov, Vladimir ; Hasanov, Alemdar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, Vladimir</creatorcontrib><creatorcontrib>Hasanov, Alemdar</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, Vladimir</au><au>Hasanov, Alemdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</atitle><jtitle>Inverse problems</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>37</volume><issue>3</issue><spage>35005</spage><pages>35005-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><abstract>The inverse problem of recovering the potential q ( x ) in the damped wave equation m ( x ) u t t + μ ( x ) u t = r ( x ) u x x + q ( x ) u , ( x , t ) ∈ Ω T ≔ (0, ℓ ) × (0, T ) subject to the boundary conditions u (0, t ) = ν ( t ), u ( ℓ , t ) = 0, from the Neumann boundary measured output f ( t ) ≔ r (0) u x (0, t ), t ∈ (0, T ] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous.</abstract><doi>10.1088/1361-6420/abdb41</doi><orcidid>https://orcid.org/0000-0002-1886-3280</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2021-03, Vol.37 (3), p.35005
issn 0266-5611
1361-6420
language eng
recordid cdi_crossref_primary_10_1088_1361_6420_abdb41
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20a%20potential%20in%20damped%20wave%20equation%20from%20Dirichlet-to-Neumann%20operator&rft.jtitle=Inverse%20problems&rft.au=Romanov,%20Vladimir&rft.date=2021-03-01&rft.volume=37&rft.issue=3&rft.spage=35005&rft.pages=35005-&rft.issn=0266-5611&rft.eissn=1361-6420&rft_id=info:doi/10.1088/1361-6420/abdb41&rft_dat=%3Ccrossref%3E10_1088_1361_6420_abdb41%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true