Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator
The inverse problem of recovering the potential q ( x ) in the damped wave equation m ( x ) u t t + μ ( x ) u t = r ( x ) u x x + q ( x ) u , ( x , t ) ∈ Ω T ≔ (0, ℓ ) × (0, T ) subject to the boundary conditions u (0, t ) = ν ( t ), u ( ℓ , t ) = 0, from the Neumann boundary measured output f ( t )...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2021-03, Vol.37 (3), p.35005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 35005 |
container_title | Inverse problems |
container_volume | 37 |
creator | Romanov, Vladimir Hasanov, Alemdar |
description | The inverse problem of recovering the potential
q
(
x
) in the damped wave equation
m
(
x
)
u
t
t
+
μ
(
x
)
u
t
=
r
(
x
)
u
x
x
+
q
(
x
)
u
, (
x
,
t
) ∈ Ω
T
≔ (0,
ℓ
) × (0,
T
) subject to the boundary conditions
u
(0,
t
) =
ν
(
t
),
u
(
ℓ
,
t
) = 0, from the Neumann boundary measured output
f
(
t
) ≔
r
(0)
u
x
(0,
t
),
t
∈ (0,
T
] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous. |
doi_str_mv | 10.1088/1361-6420/abdb41 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6420_abdb41</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1361_6420_abdb41</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</originalsourceid><addsrcrecordid>eNo9kM1KxDAYRYMoOI7uXeYF4uRrftouZfwZYVAUXZc0-aKRtqlpZsS3lzLi6sJZXDiHkEvgV8CragVCA9Oy4CvTulbCEVn8o2Oy4IXWTGmAU3I2TZ-cA1RQLsjzC9q4xxSGd2roGDMOOZiOhoE604_o6LfZI8WvnckhDtSn2NObkIL96DCzHNkj7nozDDSOmEyO6ZyceNNNePG3S_J2d_u63rDt0_3D-nrLbCFFZs62hUTuVYsCRF2XzhTeg9JFjR5qrp00IEolvFJacS-9LEspbOus5XULYkn44demOE0JfTOm0Jv00wBv5iTN7N_M_s0hifgF_e1V4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Romanov, Vladimir ; Hasanov, Alemdar</creator><creatorcontrib>Romanov, Vladimir ; Hasanov, Alemdar</creatorcontrib><description>The inverse problem of recovering the potential
q
(
x
) in the damped wave equation
m
(
x
)
u
t
t
+
μ
(
x
)
u
t
=
r
(
x
)
u
x
x
+
q
(
x
)
u
, (
x
,
t
) ∈ Ω
T
≔ (0,
ℓ
) × (0,
T
) subject to the boundary conditions
u
(0,
t
) =
ν
(
t
),
u
(
ℓ
,
t
) = 0, from the Neumann boundary measured output
f
(
t
) ≔
r
(0)
u
x
(0,
t
),
t
∈ (0,
T
] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/abdb41</identifier><language>eng</language><ispartof>Inverse problems, 2021-03, Vol.37 (3), p.35005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</citedby><cites>FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</cites><orcidid>0000-0002-1886-3280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Romanov, Vladimir</creatorcontrib><creatorcontrib>Hasanov, Alemdar</creatorcontrib><title>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</title><title>Inverse problems</title><description>The inverse problem of recovering the potential
q
(
x
) in the damped wave equation
m
(
x
)
u
t
t
+
μ
(
x
)
u
t
=
r
(
x
)
u
x
x
+
q
(
x
)
u
, (
x
,
t
) ∈ Ω
T
≔ (0,
ℓ
) × (0,
T
) subject to the boundary conditions
u
(0,
t
) =
ν
(
t
),
u
(
ℓ
,
t
) = 0, from the Neumann boundary measured output
f
(
t
) ≔
r
(0)
u
x
(0,
t
),
t
∈ (0,
T
] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous.</description><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KxDAYRYMoOI7uXeYF4uRrftouZfwZYVAUXZc0-aKRtqlpZsS3lzLi6sJZXDiHkEvgV8CragVCA9Oy4CvTulbCEVn8o2Oy4IXWTGmAU3I2TZ-cA1RQLsjzC9q4xxSGd2roGDMOOZiOhoE604_o6LfZI8WvnckhDtSn2NObkIL96DCzHNkj7nozDDSOmEyO6ZyceNNNePG3S_J2d_u63rDt0_3D-nrLbCFFZs62hUTuVYsCRF2XzhTeg9JFjR5qrp00IEolvFJacS-9LEspbOus5XULYkn44demOE0JfTOm0Jv00wBv5iTN7N_M_s0hifgF_e1V4Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Romanov, Vladimir</creator><creator>Hasanov, Alemdar</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1886-3280</orcidid></search><sort><creationdate>20210301</creationdate><title>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</title><author>Romanov, Vladimir ; Hasanov, Alemdar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-dcb24e0f5be313997da2ff15629ef1906d4a13753f55650f4f47743cbdcc09b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, Vladimir</creatorcontrib><creatorcontrib>Hasanov, Alemdar</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, Vladimir</au><au>Hasanov, Alemdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator</atitle><jtitle>Inverse problems</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>37</volume><issue>3</issue><spage>35005</spage><pages>35005-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><abstract>The inverse problem of recovering the potential
q
(
x
) in the damped wave equation
m
(
x
)
u
t
t
+
μ
(
x
)
u
t
=
r
(
x
)
u
x
x
+
q
(
x
)
u
, (
x
,
t
) ∈ Ω
T
≔ (0,
ℓ
) × (0,
T
) subject to the boundary conditions
u
(0,
t
) =
ν
(
t
),
u
(
ℓ
,
t
) = 0, from the Neumann boundary measured output
f
(
t
) ≔
r
(0)
u
x
(0,
t
),
t
∈ (0,
T
] is studied. The approach proposed in this paper allows us to derive behavior of the direct problem solution in the subdomains defined by characteristics of the wave equation and along the characteristic lines, as well. Based on these results, a local existence theorem and the stability estimate are proved. The compactness and Lipschitz continuity of the Dirichlet-to-Neumann operator are derived. Fréchet differentiability of the Tikhonov functional is proved and an explicit gradient formula is derived by means of an appropriate adjoint problem. It is proved that this gradient is Lipschitz continuous.</abstract><doi>10.1088/1361-6420/abdb41</doi><orcidid>https://orcid.org/0000-0002-1886-3280</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-5611 |
ispartof | Inverse problems, 2021-03, Vol.37 (3), p.35005 |
issn | 0266-5611 1361-6420 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6420_abdb41 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
title | Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovering%20a%20potential%20in%20damped%20wave%20equation%20from%20Dirichlet-to-Neumann%20operator&rft.jtitle=Inverse%20problems&rft.au=Romanov,%20Vladimir&rft.date=2021-03-01&rft.volume=37&rft.issue=3&rft.spage=35005&rft.pages=35005-&rft.issn=0266-5611&rft.eissn=1361-6420&rft_id=info:doi/10.1088/1361-6420/abdb41&rft_dat=%3Ccrossref%3E10_1088_1361_6420_abdb41%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |