A nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging

This paper introduces an efficient method for solving nonconvex penalized minimization problems. The topic is relevant in many imaging problems characterized by sparse data. The proposed method originates from the iterative reweighting l1 scheme, modified by the automatic update of the regularizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2019-08, Vol.35 (8), p.84002
Hauptverfasser: Lazzaro, D, Piccolomini, E Loli, Zama, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 84002
container_title Inverse problems
container_volume 35
creator Lazzaro, D
Piccolomini, E Loli
Zama, F
description This paper introduces an efficient method for solving nonconvex penalized minimization problems. The topic is relevant in many imaging problems characterized by sparse data. The proposed method originates from the iterative reweighting l1 scheme, modified by the automatic update of the regularization parameter on the basis of the behavior of the objective function. Besides proving the convergence of the method, a modified algorithm is obtained and the performance is tested on two different sparse imaging problems. The proposed method can be viewed as a general framework which can be adapted to different one-parameter nonconvex penalty functions and applied to problems characterized by sparse data.
doi_str_mv 10.1088/1361-6420/ab1c6b
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6420_ab1c6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ipab1c6b</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-4c6768d787c1c106f706657f3490453985143f9780e43f1b41ce289ea6977293</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPINSTh-0sqwooUiU23VuumaSuEjuyU15fj6sAOzZzNY97NTqE3AK7ByblAgoOGS9zttA7MHx3RmZ_o3MyYznnWcUBLslVjAfGACSIGTksqfPOePeGH3RApzv7pUfrHdVd64Md9z19T5Xq4-j7tDHU7L01SH1Dxz3SgO2x0-HXNeigexwxUOtoTF1EanvdWtdek4tGdxFvfnROto8P29U627w8Pa-Wm8wUeT5mpeGCy1chhQEDjDeCcV6JpihrVlZFLSsoi6YWkmFS2JVgMJc1al4LkdfFnLAp1gQfY8BGDSF9ED4VMHVCpU5c1ImLmlAly91ksX5QB38MCUP8__wbl8Rrvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging</title><source>Institute of Physics Journals</source><creator>Lazzaro, D ; Piccolomini, E Loli ; Zama, F</creator><creatorcontrib>Lazzaro, D ; Piccolomini, E Loli ; Zama, F</creatorcontrib><description>This paper introduces an efficient method for solving nonconvex penalized minimization problems. The topic is relevant in many imaging problems characterized by sparse data. The proposed method originates from the iterative reweighting l1 scheme, modified by the automatic update of the regularization parameter on the basis of the behavior of the objective function. Besides proving the convergence of the method, a modified algorithm is obtained and the performance is tested on two different sparse imaging problems. The proposed method can be viewed as a general framework which can be adapted to different one-parameter nonconvex penalty functions and applied to problems characterized by sparse data.</description><identifier>ISSN: 0266-5611</identifier><identifier>EISSN: 1361-6420</identifier><identifier>DOI: 10.1088/1361-6420/ab1c6b</identifier><identifier>CODEN: INPEEY</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>automatic selection of regularization parameter ; iterative reweighting ; nonconvex minimization ; nonconvex regularization ; sparse imaging</subject><ispartof>Inverse problems, 2019-08, Vol.35 (8), p.84002</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-4c6768d787c1c106f706657f3490453985143f9780e43f1b41ce289ea6977293</citedby><cites>FETCH-LOGICAL-c322t-4c6768d787c1c106f706657f3490453985143f9780e43f1b41ce289ea6977293</cites><orcidid>0000-0003-3961-4037 ; 0000-0002-9951-3564 ; 0000-0002-2029-9842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6420/ab1c6b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Lazzaro, D</creatorcontrib><creatorcontrib>Piccolomini, E Loli</creatorcontrib><creatorcontrib>Zama, F</creatorcontrib><title>A nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging</title><title>Inverse problems</title><addtitle>IP</addtitle><addtitle>Inverse Problems</addtitle><description>This paper introduces an efficient method for solving nonconvex penalized minimization problems. The topic is relevant in many imaging problems characterized by sparse data. The proposed method originates from the iterative reweighting l1 scheme, modified by the automatic update of the regularization parameter on the basis of the behavior of the objective function. Besides proving the convergence of the method, a modified algorithm is obtained and the performance is tested on two different sparse imaging problems. The proposed method can be viewed as a general framework which can be adapted to different one-parameter nonconvex penalty functions and applied to problems characterized by sparse data.</description><subject>automatic selection of regularization parameter</subject><subject>iterative reweighting</subject><subject>nonconvex minimization</subject><subject>nonconvex regularization</subject><subject>sparse imaging</subject><issn>0266-5611</issn><issn>1361-6420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPINSTh-0sqwooUiU23VuumaSuEjuyU15fj6sAOzZzNY97NTqE3AK7ByblAgoOGS9zttA7MHx3RmZ_o3MyYznnWcUBLslVjAfGACSIGTksqfPOePeGH3RApzv7pUfrHdVd64Md9z19T5Xq4-j7tDHU7L01SH1Dxz3SgO2x0-HXNeigexwxUOtoTF1EanvdWtdek4tGdxFvfnROto8P29U627w8Pa-Wm8wUeT5mpeGCy1chhQEDjDeCcV6JpihrVlZFLSsoi6YWkmFS2JVgMJc1al4LkdfFnLAp1gQfY8BGDSF9ED4VMHVCpU5c1ImLmlAly91ksX5QB38MCUP8__wbl8Rrvw</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Lazzaro, D</creator><creator>Piccolomini, E Loli</creator><creator>Zama, F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3961-4037</orcidid><orcidid>https://orcid.org/0000-0002-9951-3564</orcidid><orcidid>https://orcid.org/0000-0002-2029-9842</orcidid></search><sort><creationdate>20190801</creationdate><title>A nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging</title><author>Lazzaro, D ; Piccolomini, E Loli ; Zama, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-4c6768d787c1c106f706657f3490453985143f9780e43f1b41ce289ea6977293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>automatic selection of regularization parameter</topic><topic>iterative reweighting</topic><topic>nonconvex minimization</topic><topic>nonconvex regularization</topic><topic>sparse imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazzaro, D</creatorcontrib><creatorcontrib>Piccolomini, E Loli</creatorcontrib><creatorcontrib>Zama, F</creatorcontrib><collection>CrossRef</collection><jtitle>Inverse problems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazzaro, D</au><au>Piccolomini, E Loli</au><au>Zama, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging</atitle><jtitle>Inverse problems</jtitle><stitle>IP</stitle><addtitle>Inverse Problems</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>35</volume><issue>8</issue><spage>84002</spage><pages>84002-</pages><issn>0266-5611</issn><eissn>1361-6420</eissn><coden>INPEEY</coden><abstract>This paper introduces an efficient method for solving nonconvex penalized minimization problems. The topic is relevant in many imaging problems characterized by sparse data. The proposed method originates from the iterative reweighting l1 scheme, modified by the automatic update of the regularization parameter on the basis of the behavior of the objective function. Besides proving the convergence of the method, a modified algorithm is obtained and the performance is tested on two different sparse imaging problems. The proposed method can be viewed as a general framework which can be adapted to different one-parameter nonconvex penalty functions and applied to problems characterized by sparse data.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6420/ab1c6b</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3961-4037</orcidid><orcidid>https://orcid.org/0000-0002-9951-3564</orcidid><orcidid>https://orcid.org/0000-0002-2029-9842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-5611
ispartof Inverse problems, 2019-08, Vol.35 (8), p.84002
issn 0266-5611
1361-6420
language eng
recordid cdi_crossref_primary_10_1088_1361_6420_ab1c6b
source Institute of Physics Journals
subjects automatic selection of regularization parameter
iterative reweighting
nonconvex minimization
nonconvex regularization
sparse imaging
title A nonconvex penalization algorithm with automatic choice of the regularization parameter in sparse imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonconvex%20penalization%20algorithm%20with%20automatic%20choice%20of%20the%20regularization%20parameter%20in%20sparse%20imaging&rft.jtitle=Inverse%20problems&rft.au=Lazzaro,%20D&rft.date=2019-08-01&rft.volume=35&rft.issue=8&rft.spage=84002&rft.pages=84002-&rft.issn=0266-5611&rft.eissn=1361-6420&rft.coden=INPEEY&rft_id=info:doi/10.1088/1361-6420/ab1c6b&rft_dat=%3Ciop_cross%3Eipab1c6b%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true