Optimization of semi-empirical mass formula co-efficients using least square minimization and variational Monte-Carlo approaches

In this paper, both least squares minimization (LSM) and variational Monte-Carlo techniques have been implemented to determine the co-efficients of semi-empirical mass formula (SEMF). First, the experimental binding energies (BEs) are determined for all the available nuclei from atomic mass evaluati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of physics 2022-05, Vol.43 (3), p.35802
Hauptverfasser: Gora, Swapna, Sastri, O S K S, Soni, S K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 35802
container_title European journal of physics
container_volume 43
creator Gora, Swapna
Sastri, O S K S
Soni, S K
description In this paper, both least squares minimization (LSM) and variational Monte-Carlo techniques have been implemented to determine the co-efficients of semi-empirical mass formula (SEMF). First, the experimental binding energies (BEs) are determined for all the available nuclei from atomic mass evaluation (AME2016) data. Then, LSM technique is implemented in Gnumeric worksheet to minimize relative mean squared error (RMSE) to obtain the SEMF co-efficients by considering only the first three co-efficients which are deduced from liquid drop model. The mean percentage error (MPE) value, between obtained BEs from the optimized co-efficients and the experimental BEs, has been determined. Then, to emphasize the relevance of empirical terms, they have been introduced successively one after other and the procedure has been repeated. A reduction in MPE-value has been observed after each iteration. This same procedure has also been employed using Monte-Carlo approach to obtain SEMF co-efficients by minimizing RMSE-value as in variational principle.
doi_str_mv 10.1088/1361-6404/ac4e62
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6404_ac4e62</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ejpac4e62</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-19342f648bd9909d6aa0d9b0140738f6b75099b17d856f2af48720c5efe9fcb3</originalsourceid><addsrcrecordid>eNp9kL1PwzAUxC0EEqWwM3pjIfQ5dhJnRBVfUlGX7taLY4OrJA52ggQTfzopRbAgpqd7ujvpfoScM7hiIOWC8ZwluQCxQC1Mnh6Q2c_rkMyACZ6AhOKYnMS4BWBMMjEjH-t-cK17x8H5jnpLo2ldYtreBaexoS3GSK0P7dgg1T4x1jrtTDdEOkbXPdHGYBxofBkxGNq67rcMu5q-YnBfaqp69N1gkiWGxlPs--BRP5t4So4sNtGcfd852dzebJb3yWp997C8XiWas3RIWMlFanMhq7osoaxzRKjLapoFBZc2r4oMyrJiRS2z3KZohSxS0JmxprS64nMC-1odfIzBWNUH12J4UwzUDqDa0VI7WmoPcIpc7iPO92rrxzCNiP_ZL_6wm22vBFdcAc8kpKqvLf8EwhCCOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of semi-empirical mass formula co-efficients using least square minimization and variational Monte-Carlo approaches</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gora, Swapna ; Sastri, O S K S ; Soni, S K</creator><creatorcontrib>Gora, Swapna ; Sastri, O S K S ; Soni, S K</creatorcontrib><description>In this paper, both least squares minimization (LSM) and variational Monte-Carlo techniques have been implemented to determine the co-efficients of semi-empirical mass formula (SEMF). First, the experimental binding energies (BEs) are determined for all the available nuclei from atomic mass evaluation (AME2016) data. Then, LSM technique is implemented in Gnumeric worksheet to minimize relative mean squared error (RMSE) to obtain the SEMF co-efficients by considering only the first three co-efficients which are deduced from liquid drop model. The mean percentage error (MPE) value, between obtained BEs from the optimized co-efficients and the experimental BEs, has been determined. Then, to emphasize the relevance of empirical terms, they have been introduced successively one after other and the procedure has been repeated. A reduction in MPE-value has been observed after each iteration. This same procedure has also been employed using Monte-Carlo approach to obtain SEMF co-efficients by minimizing RMSE-value as in variational principle.</description><identifier>ISSN: 0143-0807</identifier><identifier>EISSN: 1361-6404</identifier><identifier>DOI: 10.1088/1361-6404/ac4e62</identifier><identifier>CODEN: EJPHD4</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Gnumeric ; least squares minimization (LSM) ; liquid drop model (LDM) ; semi-empirical mass formula (SEMF) ; variational Monte-Carlo (VMC)</subject><ispartof>European journal of physics, 2022-05, Vol.43 (3), p.35802</ispartof><rights>2022 European Physical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-19342f648bd9909d6aa0d9b0140738f6b75099b17d856f2af48720c5efe9fcb3</citedby><cites>FETCH-LOGICAL-c312t-19342f648bd9909d6aa0d9b0140738f6b75099b17d856f2af48720c5efe9fcb3</cites><orcidid>0000-0003-1405-5283 ; 0000-0002-6027-2724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6404/ac4e62/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Gora, Swapna</creatorcontrib><creatorcontrib>Sastri, O S K S</creatorcontrib><creatorcontrib>Soni, S K</creatorcontrib><title>Optimization of semi-empirical mass formula co-efficients using least square minimization and variational Monte-Carlo approaches</title><title>European journal of physics</title><addtitle>EJP</addtitle><addtitle>Eur. J. Phys</addtitle><description>In this paper, both least squares minimization (LSM) and variational Monte-Carlo techniques have been implemented to determine the co-efficients of semi-empirical mass formula (SEMF). First, the experimental binding energies (BEs) are determined for all the available nuclei from atomic mass evaluation (AME2016) data. Then, LSM technique is implemented in Gnumeric worksheet to minimize relative mean squared error (RMSE) to obtain the SEMF co-efficients by considering only the first three co-efficients which are deduced from liquid drop model. The mean percentage error (MPE) value, between obtained BEs from the optimized co-efficients and the experimental BEs, has been determined. Then, to emphasize the relevance of empirical terms, they have been introduced successively one after other and the procedure has been repeated. A reduction in MPE-value has been observed after each iteration. This same procedure has also been employed using Monte-Carlo approach to obtain SEMF co-efficients by minimizing RMSE-value as in variational principle.</description><subject>Gnumeric</subject><subject>least squares minimization (LSM)</subject><subject>liquid drop model (LDM)</subject><subject>semi-empirical mass formula (SEMF)</subject><subject>variational Monte-Carlo (VMC)</subject><issn>0143-0807</issn><issn>1361-6404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAUxC0EEqWwM3pjIfQ5dhJnRBVfUlGX7taLY4OrJA52ggQTfzopRbAgpqd7ujvpfoScM7hiIOWC8ZwluQCxQC1Mnh6Q2c_rkMyACZ6AhOKYnMS4BWBMMjEjH-t-cK17x8H5jnpLo2ldYtreBaexoS3GSK0P7dgg1T4x1jrtTDdEOkbXPdHGYBxofBkxGNq67rcMu5q-YnBfaqp69N1gkiWGxlPs--BRP5t4So4sNtGcfd852dzebJb3yWp997C8XiWas3RIWMlFanMhq7osoaxzRKjLapoFBZc2r4oMyrJiRS2z3KZohSxS0JmxprS64nMC-1odfIzBWNUH12J4UwzUDqDa0VI7WmoPcIpc7iPO92rrxzCNiP_ZL_6wm22vBFdcAc8kpKqvLf8EwhCCOw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Gora, Swapna</creator><creator>Sastri, O S K S</creator><creator>Soni, S K</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1405-5283</orcidid><orcidid>https://orcid.org/0000-0002-6027-2724</orcidid></search><sort><creationdate>20220501</creationdate><title>Optimization of semi-empirical mass formula co-efficients using least square minimization and variational Monte-Carlo approaches</title><author>Gora, Swapna ; Sastri, O S K S ; Soni, S K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-19342f648bd9909d6aa0d9b0140738f6b75099b17d856f2af48720c5efe9fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Gnumeric</topic><topic>least squares minimization (LSM)</topic><topic>liquid drop model (LDM)</topic><topic>semi-empirical mass formula (SEMF)</topic><topic>variational Monte-Carlo (VMC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gora, Swapna</creatorcontrib><creatorcontrib>Sastri, O S K S</creatorcontrib><creatorcontrib>Soni, S K</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gora, Swapna</au><au>Sastri, O S K S</au><au>Soni, S K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of semi-empirical mass formula co-efficients using least square minimization and variational Monte-Carlo approaches</atitle><jtitle>European journal of physics</jtitle><stitle>EJP</stitle><addtitle>Eur. J. Phys</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>43</volume><issue>3</issue><spage>35802</spage><pages>35802-</pages><issn>0143-0807</issn><eissn>1361-6404</eissn><coden>EJPHD4</coden><abstract>In this paper, both least squares minimization (LSM) and variational Monte-Carlo techniques have been implemented to determine the co-efficients of semi-empirical mass formula (SEMF). First, the experimental binding energies (BEs) are determined for all the available nuclei from atomic mass evaluation (AME2016) data. Then, LSM technique is implemented in Gnumeric worksheet to minimize relative mean squared error (RMSE) to obtain the SEMF co-efficients by considering only the first three co-efficients which are deduced from liquid drop model. The mean percentage error (MPE) value, between obtained BEs from the optimized co-efficients and the experimental BEs, has been determined. Then, to emphasize the relevance of empirical terms, they have been introduced successively one after other and the procedure has been repeated. A reduction in MPE-value has been observed after each iteration. This same procedure has also been employed using Monte-Carlo approach to obtain SEMF co-efficients by minimizing RMSE-value as in variational principle.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6404/ac4e62</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1405-5283</orcidid><orcidid>https://orcid.org/0000-0002-6027-2724</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-0807
ispartof European journal of physics, 2022-05, Vol.43 (3), p.35802
issn 0143-0807
1361-6404
language eng
recordid cdi_crossref_primary_10_1088_1361_6404_ac4e62
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Gnumeric
least squares minimization (LSM)
liquid drop model (LDM)
semi-empirical mass formula (SEMF)
variational Monte-Carlo (VMC)
title Optimization of semi-empirical mass formula co-efficients using least square minimization and variational Monte-Carlo approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20semi-empirical%20mass%20formula%20co-efficients%20using%20least%20square%20minimization%20and%20variational%20Monte-Carlo%20approaches&rft.jtitle=European%20journal%20of%20physics&rft.au=Gora,%20Swapna&rft.date=2022-05-01&rft.volume=43&rft.issue=3&rft.spage=35802&rft.pages=35802-&rft.issn=0143-0807&rft.eissn=1361-6404&rft.coden=EJPHD4&rft_id=info:doi/10.1088/1361-6404/ac4e62&rft_dat=%3Ciop_cross%3Eejpac4e62%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true