Complex structures for Klein–Gordon theory on globally hyperbolic spacetimes

We develop a rigorous method to parametrize complex structures for Klein–Gordon theory in globally hyperbolic spacetimes that satisfy a completeness condition. The complex structures are conserved under time-evolution and implement unitary quantizations. They can be interpreted as corresponding to g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2022-01, Vol.39 (2), p.25015
Hauptverfasser: Much, Albert, Oeckl, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25015
container_title Classical and quantum gravity
container_volume 39
creator Much, Albert
Oeckl, Robert
description We develop a rigorous method to parametrize complex structures for Klein–Gordon theory in globally hyperbolic spacetimes that satisfy a completeness condition. The complex structures are conserved under time-evolution and implement unitary quantizations. They can be interpreted as corresponding to global choices of vacuum. The main ingredient in our construction is a system of operator differential equations. We provide a number of theorems ensuring that all ingredients and steps in the construction are well-defined. We apply the method to exhibit natural quantizations for certain classes of globally hyperbolic spacetimes. In particular, we consider static, expanding and Friedmann–Robertson–Walker spacetimes. Moreover, for a huge class of spacetimes we prove that the differential equation for the complex structure is given by the Gelfand–Dikki equation.
doi_str_mv 10.1088/1361-6382/ac3fbd
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6382_ac3fbd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgac3fbd</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-c1e173c5b7d5277d54d1b62e836e2aa9952a55ff45b259f4d2a3ab6ad033b25d3</originalsourceid><addsrcrecordid>eNp1UEtOwzAUtBBIlMKepQ9AqD-x6yxRBS2igg2sLX9pKieO7FQiO-7ADTkJqYLYsXnvaTTzNDMAXGN0i5EQC0w5LjgVZKEM9dqegNkfdApmiPCyqKjA5-Ai5z1CGAtMZuB5FZsuuA-Y-3Qw_SG5DH1M8Cm4uv3-_FrHZGML-52LaYDj9R6iViEMcDd0LukYagNzp4zr68blS3DmVcju6nfPwdvD_etqU2xf1o-ru21hiEB9YbDDS2qYXlpGluMoLdacOEG5I0pVFSOKMe9LpgmrfGmJokpzZRGlI2LpHKDpr0kx5-S87FLdqDRIjOSxD3kML4_h5dTHKLmZJHXs5D4eUjsa_J_-A5zUZOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex structures for Klein–Gordon theory on globally hyperbolic spacetimes</title><source>Institute of Physics Journals</source><creator>Much, Albert ; Oeckl, Robert</creator><creatorcontrib>Much, Albert ; Oeckl, Robert</creatorcontrib><description>We develop a rigorous method to parametrize complex structures for Klein–Gordon theory in globally hyperbolic spacetimes that satisfy a completeness condition. The complex structures are conserved under time-evolution and implement unitary quantizations. They can be interpreted as corresponding to global choices of vacuum. The main ingredient in our construction is a system of operator differential equations. We provide a number of theorems ensuring that all ingredients and steps in the construction are well-defined. We apply the method to exhibit natural quantizations for certain classes of globally hyperbolic spacetimes. In particular, we consider static, expanding and Friedmann–Robertson–Walker spacetimes. Moreover, for a huge class of spacetimes we prove that the differential equation for the complex structure is given by the Gelfand–Dikki equation.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ac3fbd</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>complex structure ; Gelfand–Dikki equation ; geometric quantization ; globally hyperbolic spacetime ; Klein–Gordon theory ; operator differential equations ; self-adjoint operators</subject><ispartof>Classical and quantum gravity, 2022-01, Vol.39 (2), p.25015</ispartof><rights>2021 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-c1e173c5b7d5277d54d1b62e836e2aa9952a55ff45b259f4d2a3ab6ad033b25d3</citedby><cites>FETCH-LOGICAL-c280t-c1e173c5b7d5277d54d1b62e836e2aa9952a55ff45b259f4d2a3ab6ad033b25d3</cites><orcidid>0000-0002-2648-2058 ; 0000-0003-3447-7897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/ac3fbd/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids></links><search><creatorcontrib>Much, Albert</creatorcontrib><creatorcontrib>Oeckl, Robert</creatorcontrib><title>Complex structures for Klein–Gordon theory on globally hyperbolic spacetimes</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We develop a rigorous method to parametrize complex structures for Klein–Gordon theory in globally hyperbolic spacetimes that satisfy a completeness condition. The complex structures are conserved under time-evolution and implement unitary quantizations. They can be interpreted as corresponding to global choices of vacuum. The main ingredient in our construction is a system of operator differential equations. We provide a number of theorems ensuring that all ingredients and steps in the construction are well-defined. We apply the method to exhibit natural quantizations for certain classes of globally hyperbolic spacetimes. In particular, we consider static, expanding and Friedmann–Robertson–Walker spacetimes. Moreover, for a huge class of spacetimes we prove that the differential equation for the complex structure is given by the Gelfand–Dikki equation.</description><subject>complex structure</subject><subject>Gelfand–Dikki equation</subject><subject>geometric quantization</subject><subject>globally hyperbolic spacetime</subject><subject>Klein–Gordon theory</subject><subject>operator differential equations</subject><subject>self-adjoint operators</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAUtBBIlMKepQ9AqD-x6yxRBS2igg2sLX9pKieO7FQiO-7ADTkJqYLYsXnvaTTzNDMAXGN0i5EQC0w5LjgVZKEM9dqegNkfdApmiPCyqKjA5-Ai5z1CGAtMZuB5FZsuuA-Y-3Qw_SG5DH1M8Cm4uv3-_FrHZGML-52LaYDj9R6iViEMcDd0LukYagNzp4zr68blS3DmVcju6nfPwdvD_etqU2xf1o-ru21hiEB9YbDDS2qYXlpGluMoLdacOEG5I0pVFSOKMe9LpgmrfGmJokpzZRGlI2LpHKDpr0kx5-S87FLdqDRIjOSxD3kML4_h5dTHKLmZJHXs5D4eUjsa_J_-A5zUZOA</recordid><startdate>20220120</startdate><enddate>20220120</enddate><creator>Much, Albert</creator><creator>Oeckl, Robert</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2648-2058</orcidid><orcidid>https://orcid.org/0000-0003-3447-7897</orcidid></search><sort><creationdate>20220120</creationdate><title>Complex structures for Klein–Gordon theory on globally hyperbolic spacetimes</title><author>Much, Albert ; Oeckl, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-c1e173c5b7d5277d54d1b62e836e2aa9952a55ff45b259f4d2a3ab6ad033b25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>complex structure</topic><topic>Gelfand–Dikki equation</topic><topic>geometric quantization</topic><topic>globally hyperbolic spacetime</topic><topic>Klein–Gordon theory</topic><topic>operator differential equations</topic><topic>self-adjoint operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Much, Albert</creatorcontrib><creatorcontrib>Oeckl, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Much, Albert</au><au>Oeckl, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex structures for Klein–Gordon theory on globally hyperbolic spacetimes</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2022-01-20</date><risdate>2022</risdate><volume>39</volume><issue>2</issue><spage>25015</spage><pages>25015-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We develop a rigorous method to parametrize complex structures for Klein–Gordon theory in globally hyperbolic spacetimes that satisfy a completeness condition. The complex structures are conserved under time-evolution and implement unitary quantizations. They can be interpreted as corresponding to global choices of vacuum. The main ingredient in our construction is a system of operator differential equations. We provide a number of theorems ensuring that all ingredients and steps in the construction are well-defined. We apply the method to exhibit natural quantizations for certain classes of globally hyperbolic spacetimes. In particular, we consider static, expanding and Friedmann–Robertson–Walker spacetimes. Moreover, for a huge class of spacetimes we prove that the differential equation for the complex structure is given by the Gelfand–Dikki equation.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ac3fbd</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-2648-2058</orcidid><orcidid>https://orcid.org/0000-0003-3447-7897</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2022-01, Vol.39 (2), p.25015
issn 0264-9381
1361-6382
language eng
recordid cdi_crossref_primary_10_1088_1361_6382_ac3fbd
source Institute of Physics Journals
subjects complex structure
Gelfand–Dikki equation
geometric quantization
globally hyperbolic spacetime
Klein–Gordon theory
operator differential equations
self-adjoint operators
title Complex structures for Klein–Gordon theory on globally hyperbolic spacetimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20structures%20for%20Klein%E2%80%93Gordon%20theory%20on%20globally%20hyperbolic%20spacetimes&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Much,%20Albert&rft.date=2022-01-20&rft.volume=39&rft.issue=2&rft.spage=25015&rft.pages=25015-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ac3fbd&rft_dat=%3Ciop_cross%3Ecqgac3fbd%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true