Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds

We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Eins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2020-01, Vol.37 (2), p.25002
Hauptverfasser: Ivanov, Stefan, Zlatanovi, Milan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 25002
container_title Classical and quantum gravity
container_volume 37
creator Ivanov, Stefan
Zlatanovi, Milan
description We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures.
doi_str_mv 10.1088/1361-6382/ab5cc3
format Article
fullrecord <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6382_ab5cc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgab5cc3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEf3LvsDjJObtmm6U4bxAYOCj3W4SRPJOE2HpArz722puHN14XLO4TuHkEtg18CkXEIhgIpC8iXqypjiiGR_r2OSMS5K2hQSTslZSlvGACTwjNw89YGmQ9fZIXqTv3jbYQgeQ_4R8dsPhxxDm79iwk9P1z6kwfqQV3RUedfv2nROThzukr34vQvyfrd-Wz3QzfP94-p2Qw2XbKClQe4caCe45hWytjJaCIOyZpXTIExZj0wWrAbdGFZrIUdwwcumLRpsTLEgbM41sU8pWqf20XcYDwqYmhZQU1011VXzAqPlarb4fq-2_VcMI-D_8h9kWV0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ivanov, Stefan ; Zlatanovi, Milan</creator><creatorcontrib>Ivanov, Stefan ; Zlatanovi, Milan</creatorcontrib><description>We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ab5cc3</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Einstein metricity condition ; gravity ; Sasaki-Einstein 5-manifolds ; skew-symmetric torsion</subject><ispartof>Classical and quantum gravity, 2020-01, Vol.37 (2), p.25002</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</citedby><cites>FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</cites><orcidid>0000-0002-0318-1092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/ab5cc3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Ivanov, Stefan</creatorcontrib><creatorcontrib>Zlatanovi, Milan</creatorcontrib><title>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures.</description><subject>Einstein metricity condition</subject><subject>gravity</subject><subject>Sasaki-Einstein 5-manifolds</subject><subject>skew-symmetric torsion</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEf3LvsDjJObtmm6U4bxAYOCj3W4SRPJOE2HpArz722puHN14XLO4TuHkEtg18CkXEIhgIpC8iXqypjiiGR_r2OSMS5K2hQSTslZSlvGACTwjNw89YGmQ9fZIXqTv3jbYQgeQ_4R8dsPhxxDm79iwk9P1z6kwfqQV3RUedfv2nROThzukr34vQvyfrd-Wz3QzfP94-p2Qw2XbKClQe4caCe45hWytjJaCIOyZpXTIExZj0wWrAbdGFZrIUdwwcumLRpsTLEgbM41sU8pWqf20XcYDwqYmhZQU1011VXzAqPlarb4fq-2_VcMI-D_8h9kWV0s</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Ivanov, Stefan</creator><creator>Zlatanovi, Milan</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0318-1092</orcidid></search><sort><creationdate>20200123</creationdate><title>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</title><author>Ivanov, Stefan ; Zlatanovi, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Einstein metricity condition</topic><topic>gravity</topic><topic>Sasaki-Einstein 5-manifolds</topic><topic>skew-symmetric torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, Stefan</creatorcontrib><creatorcontrib>Zlatanovi, Milan</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, Stefan</au><au>Zlatanovi, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>37</volume><issue>2</issue><spage>25002</spage><pages>25002-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ab5cc3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0318-1092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2020-01, Vol.37 (2), p.25002
issn 0264-9381
1361-6382
language eng
recordid cdi_crossref_primary_10_1088_1361_6382_ab5cc3
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Einstein metricity condition
gravity
Sasaki-Einstein 5-manifolds
skew-symmetric torsion
title Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-symmetric%20Riemannian%20gravity%20and%20Sasaki-Einstein%205-manifolds&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Ivanov,%20Stefan&rft.date=2020-01-23&rft.volume=37&rft.issue=2&rft.spage=25002&rft.pages=25002-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ab5cc3&rft_dat=%3Ciop_cross%3Ecqgab5cc3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true