Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds
We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Eins...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2020-01, Vol.37 (2), p.25002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 25002 |
container_title | Classical and quantum gravity |
container_volume | 37 |
creator | Ivanov, Stefan Zlatanovi, Milan |
description | We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures. |
doi_str_mv | 10.1088/1361-6382/ab5cc3 |
format | Article |
fullrecord | <record><control><sourceid>iop_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1088_1361_6382_ab5cc3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>cqgab5cc3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEf3LvsDjJObtmm6U4bxAYOCj3W4SRPJOE2HpArz722puHN14XLO4TuHkEtg18CkXEIhgIpC8iXqypjiiGR_r2OSMS5K2hQSTslZSlvGACTwjNw89YGmQ9fZIXqTv3jbYQgeQ_4R8dsPhxxDm79iwk9P1z6kwfqQV3RUedfv2nROThzukr34vQvyfrd-Wz3QzfP94-p2Qw2XbKClQe4caCe45hWytjJaCIOyZpXTIExZj0wWrAbdGFZrIUdwwcumLRpsTLEgbM41sU8pWqf20XcYDwqYmhZQU1011VXzAqPlarb4fq-2_VcMI-D_8h9kWV0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Ivanov, Stefan ; Zlatanovi, Milan</creator><creatorcontrib>Ivanov, Stefan ; Zlatanovi, Milan</creatorcontrib><description>We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/1361-6382/ab5cc3</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Einstein metricity condition ; gravity ; Sasaki-Einstein 5-manifolds ; skew-symmetric torsion</subject><ispartof>Classical and quantum gravity, 2020-01, Vol.37 (2), p.25002</ispartof><rights>2019 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</citedby><cites>FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</cites><orcidid>0000-0002-0318-1092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6382/ab5cc3/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Ivanov, Stefan</creatorcontrib><creatorcontrib>Zlatanovi, Milan</creatorcontrib><title>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures.</description><subject>Einstein metricity condition</subject><subject>gravity</subject><subject>Sasaki-Einstein 5-manifolds</subject><subject>skew-symmetric torsion</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEf3LvsDjJObtmm6U4bxAYOCj3W4SRPJOE2HpArz722puHN14XLO4TuHkEtg18CkXEIhgIpC8iXqypjiiGR_r2OSMS5K2hQSTslZSlvGACTwjNw89YGmQ9fZIXqTv3jbYQgeQ_4R8dsPhxxDm79iwk9P1z6kwfqQV3RUedfv2nROThzukr34vQvyfrd-Wz3QzfP94-p2Qw2XbKClQe4caCe45hWytjJaCIOyZpXTIExZj0wWrAbdGFZrIUdwwcumLRpsTLEgbM41sU8pWqf20XcYDwqYmhZQU1011VXzAqPlarb4fq-2_VcMI-D_8h9kWV0s</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Ivanov, Stefan</creator><creator>Zlatanovi, Milan</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0318-1092</orcidid></search><sort><creationdate>20200123</creationdate><title>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</title><author>Ivanov, Stefan ; Zlatanovi, Milan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-4ca2ff1bf62b25a0d5cb66ca8705fb16c47001e1eb1b9c07b683826249d39a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Einstein metricity condition</topic><topic>gravity</topic><topic>Sasaki-Einstein 5-manifolds</topic><topic>skew-symmetric torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, Stefan</creatorcontrib><creatorcontrib>Zlatanovi, Milan</creatorcontrib><collection>CrossRef</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, Stefan</au><au>Zlatanovi, Milan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>37</volume><issue>2</issue><spage>25002</spage><pages>25002-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We show that a connection with skew-symmetric torsion satisfying the Einstein metricity condition exists on an almost contact metric manifold exactly when it is D-homothetic to a cosymplectic manifold. In dimension five, we get that the existence of a connection with skew torsion satisfying the Einstein metricity condition is equivalent to the existence of a Sasaki-Einstein 5-manifold and vice versa, any Sasaki-Einstein 5-manifold generates a two parametric family of connections with skew torsion satisfying the Einstein metricity condition. Formulas for the curvature and the Ricci tensors of these connections are presented in terms of the Sasaki-Einstein SU(2) structures.</abstract><pub>IOP Publishing</pub><doi>10.1088/1361-6382/ab5cc3</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0318-1092</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2020-01, Vol.37 (2), p.25002 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_crossref_primary_10_1088_1361_6382_ab5cc3 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Einstein metricity condition gravity Sasaki-Einstein 5-manifolds skew-symmetric torsion |
title | Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-symmetric%20Riemannian%20gravity%20and%20Sasaki-Einstein%205-manifolds&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Ivanov,%20Stefan&rft.date=2020-01-23&rft.volume=37&rft.issue=2&rft.spage=25002&rft.pages=25002-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/1361-6382/ab5cc3&rft_dat=%3Ciop_cross%3Ecqgab5cc3%3C/iop_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |