Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour

The last 5 years have seen a series of remarkable achievements in deep-neural-network-based artificial intelligence research, and some modellers have argued that their performance compares favourably to human cognition. Critics, however, have argued that processing in deep neural networks is unlike...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The British journal for the philosophy of science 2023-09, Vol.74 (3), p.681-712
1. Verfasser: Buckner, Cameron
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 3
container_start_page 681
container_title The British journal for the philosophy of science
container_volume 74
creator Buckner, Cameron
description The last 5 years have seen a series of remarkable achievements in deep-neural-network-based artificial intelligence research, and some modellers have argued that their performance compares favourably to human cognition. Critics, however, have argued that processing in deep neural networks is unlike human cognition for four reasons: they are (i) data-hungry, (ii) brittle, and (iii) inscrutable black boxes that merely (iv) reward-hack rather than learn real solutions to problems. This article rebuts these criticisms by exposing comparative bias within them, in the process extracting some more general lessons that may also be useful for future debates.
doi_str_mv 10.1086/714960
format Article
fullrecord <record><control><sourceid>crossref_uchic</sourceid><recordid>TN_cdi_crossref_primary_10_1086_714960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1086_714960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-4d044326a8c6b5b046c7e8b9f472ab5ee07a25a8bf16b9e1c1cff757cf65c8e03</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRS0EEqXAN3iB2AXsxK-sEKnKQ2rFArpgFU3MuHVJ48pOK_h7ggqrq9E9Gh1dQi45u-HMqFvNRanYERlxoURWyEIfkxFjTGfMmPyUnKW0Hk6lSjEi71UL9pNW4QsTDZEuOtdC32P03ZLOfYwhpjs6CZstROj9HmnlIVHf0X6F9NV67CzS4Ogc7Mp3Q40r2Puwi-fkxEGb8OIvx2TxMH2bPGWzl8fnyf0ss7nM-0x8MCGKXIGxqpENE8pqNE3phM6hkYhMQy7BNI6rpkRuuXVOS22dktYgK8bk-vDXxpBSRFdvo99A_K45q38HqQ-DDODVAdwNphaWYRsxpXo9uHaD4D_2A5YJX2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour</title><source>Alma/SFX Local Collection</source><creator>Buckner, Cameron</creator><creatorcontrib>Buckner, Cameron</creatorcontrib><description>The last 5 years have seen a series of remarkable achievements in deep-neural-network-based artificial intelligence research, and some modellers have argued that their performance compares favourably to human cognition. Critics, however, have argued that processing in deep neural networks is unlike human cognition for four reasons: they are (i) data-hungry, (ii) brittle, and (iii) inscrutable black boxes that merely (iv) reward-hack rather than learn real solutions to problems. This article rebuts these criticisms by exposing comparative bias within them, in the process extracting some more general lessons that may also be useful for future debates.</description><identifier>ISSN: 0007-0882</identifier><identifier>EISSN: 1464-3537</identifier><identifier>DOI: 10.1086/714960</identifier><language>eng</language><publisher>The University of Chicago Press</publisher><ispartof>The British journal for the philosophy of science, 2023-09, Vol.74 (3), p.681-712</ispartof><rights>The British Society for the Philosophy of Science. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-4d044326a8c6b5b046c7e8b9f472ab5ee07a25a8bf16b9e1c1cff757cf65c8e03</citedby><cites>FETCH-LOGICAL-c252t-4d044326a8c6b5b046c7e8b9f472ab5ee07a25a8bf16b9e1c1cff757cf65c8e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Buckner, Cameron</creatorcontrib><title>Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour</title><title>The British journal for the philosophy of science</title><description>The last 5 years have seen a series of remarkable achievements in deep-neural-network-based artificial intelligence research, and some modellers have argued that their performance compares favourably to human cognition. Critics, however, have argued that processing in deep neural networks is unlike human cognition for four reasons: they are (i) data-hungry, (ii) brittle, and (iii) inscrutable black boxes that merely (iv) reward-hack rather than learn real solutions to problems. This article rebuts these criticisms by exposing comparative bias within them, in the process extracting some more general lessons that may also be useful for future debates.</description><issn>0007-0882</issn><issn>1464-3537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1kMtOwzAQRS0EEqXAN3iB2AXsxK-sEKnKQ2rFArpgFU3MuHVJ48pOK_h7ggqrq9E9Gh1dQi45u-HMqFvNRanYERlxoURWyEIfkxFjTGfMmPyUnKW0Hk6lSjEi71UL9pNW4QsTDZEuOtdC32P03ZLOfYwhpjs6CZstROj9HmnlIVHf0X6F9NV67CzS4Ogc7Mp3Q40r2Puwi-fkxEGb8OIvx2TxMH2bPGWzl8fnyf0ss7nM-0x8MCGKXIGxqpENE8pqNE3phM6hkYhMQy7BNI6rpkRuuXVOS22dktYgK8bk-vDXxpBSRFdvo99A_K45q38HqQ-DDODVAdwNphaWYRsxpXo9uHaD4D_2A5YJX2g</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Buckner, Cameron</creator><general>The University of Chicago Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour</title><author>Buckner, Cameron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-4d044326a8c6b5b046c7e8b9f472ab5ee07a25a8bf16b9e1c1cff757cf65c8e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckner, Cameron</creatorcontrib><collection>CrossRef</collection><jtitle>The British journal for the philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckner, Cameron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour</atitle><jtitle>The British journal for the philosophy of science</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>74</volume><issue>3</issue><spage>681</spage><epage>712</epage><pages>681-712</pages><issn>0007-0882</issn><eissn>1464-3537</eissn><abstract>The last 5 years have seen a series of remarkable achievements in deep-neural-network-based artificial intelligence research, and some modellers have argued that their performance compares favourably to human cognition. Critics, however, have argued that processing in deep neural networks is unlike human cognition for four reasons: they are (i) data-hungry, (ii) brittle, and (iii) inscrutable black boxes that merely (iv) reward-hack rather than learn real solutions to problems. This article rebuts these criticisms by exposing comparative bias within them, in the process extracting some more general lessons that may also be useful for future debates.</abstract><pub>The University of Chicago Press</pub><doi>10.1086/714960</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0007-0882
ispartof The British journal for the philosophy of science, 2023-09, Vol.74 (3), p.681-712
issn 0007-0882
1464-3537
language eng
recordid cdi_crossref_primary_10_1086_714960
source Alma/SFX Local Collection
title Black Boxes or Unflattering Mirrors? Comparative Bias in the Science of Machine Behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_uchic&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20Boxes%20or%20Unflattering%20Mirrors?%20Comparative%20Bias%20in%20the%20Science%20of%20Machine%20Behaviour&rft.jtitle=The%20British%20journal%20for%20the%20philosophy%20of%20science&rft.au=Buckner,%20Cameron&rft.date=2023-09-01&rft.volume=74&rft.issue=3&rft.spage=681&rft.epage=712&rft.pages=681-712&rft.issn=0007-0882&rft.eissn=1464-3537&rft_id=info:doi/10.1086/714960&rft_dat=%3Ccrossref_uchic%3E10_1086_714960%3C/crossref_uchic%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true