Bayes, Bounds, and Rational Analysis

While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophy of science 2018-01, Vol.85 (1), p.79-101
1. Verfasser: Icard, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 79
container_title Philosophy of science
container_volume 85
creator Icard, Thomas F.
description While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics.
doi_str_mv 10.1086/694837
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_694837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26551910</jstor_id><sourcerecordid>26551910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</originalsourceid><addsrcrecordid>eNpF0EtLw0AUBeBBFKxV_4FQsLgyeu9MMplZtsUXFARRcBcm89CU2qlzk0X_vZFI3dyz-ThcDmPnCDcISt5KnStRHrARFkJnpSzfD9kIQGCmeK6O2QnRCgBRgRqx6dzsPF1P5rHbuD7Nxk1eTNvEjVlPZv3ZUUOn7CiYNfmzvxyzt_u718Vjtnx-eFrMlpkVwNuMQ9DeoPPc5rUSwilfOGOCK0ssOHitA4dchjrUyEUtvK0dSuu80LUNnosxuxx6tyl-d57aahW71D9BFWqdS6W5Lnp1NSibIlHyodqm5sukXYVQ_S5QDQv0cDrAzn421nzEbfJE_517djGwFbUx7cu4LArUCOIHLiNiKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994689295</pqid></control><display><type>article</type><title>Bayes, Bounds, and Rational Analysis</title><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Icard, Thomas F.</creator><creatorcontrib>Icard, Thomas F.</creatorcontrib><description>While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics.</description><identifier>ISSN: 0031-8248</identifier><identifier>EISSN: 1539-767X</identifier><identifier>DOI: 10.1086/694837</identifier><language>eng</language><publisher>Cambridge: University of Chicago Press</publisher><subject>Bayesian analysis ; Cognitive ability ; Computer applications ; Empirical analysis ; Mathematical models ; Probabilistic inference ; Probability ; Rationality ; Thermodynamics</subject><ispartof>Philosophy of science, 2018-01, Vol.85 (1), p.79-101</ispartof><rights>Copyright 2018 by the Philosophy of Science Association</rights><rights>Copyright 2018 by the Philosophy of Science Association. All rights reserved.</rights><rights>Copyright University of Chicago, acting through its Press Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</citedby><cites>FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26551910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26551910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Icard, Thomas F.</creatorcontrib><title>Bayes, Bounds, and Rational Analysis</title><title>Philosophy of science</title><description>While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics.</description><subject>Bayesian analysis</subject><subject>Cognitive ability</subject><subject>Computer applications</subject><subject>Empirical analysis</subject><subject>Mathematical models</subject><subject>Probabilistic inference</subject><subject>Probability</subject><subject>Rationality</subject><subject>Thermodynamics</subject><issn>0031-8248</issn><issn>1539-767X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpF0EtLw0AUBeBBFKxV_4FQsLgyeu9MMplZtsUXFARRcBcm89CU2qlzk0X_vZFI3dyz-ThcDmPnCDcISt5KnStRHrARFkJnpSzfD9kIQGCmeK6O2QnRCgBRgRqx6dzsPF1P5rHbuD7Nxk1eTNvEjVlPZv3ZUUOn7CiYNfmzvxyzt_u718Vjtnx-eFrMlpkVwNuMQ9DeoPPc5rUSwilfOGOCK0ssOHitA4dchjrUyEUtvK0dSuu80LUNnosxuxx6tyl-d57aahW71D9BFWqdS6W5Lnp1NSibIlHyodqm5sukXYVQ_S5QDQv0cDrAzn421nzEbfJE_517djGwFbUx7cu4LArUCOIHLiNiKg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Icard, Thomas F.</creator><general>University of Chicago Press</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20180101</creationdate><title>Bayes, Bounds, and Rational Analysis</title><author>Icard, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Cognitive ability</topic><topic>Computer applications</topic><topic>Empirical analysis</topic><topic>Mathematical models</topic><topic>Probabilistic inference</topic><topic>Probability</topic><topic>Rationality</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Icard, Thomas F.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Icard, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayes, Bounds, and Rational Analysis</atitle><jtitle>Philosophy of science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>85</volume><issue>1</issue><spage>79</spage><epage>101</epage><pages>79-101</pages><issn>0031-8248</issn><eissn>1539-767X</eissn><abstract>While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics.</abstract><cop>Cambridge</cop><pub>University of Chicago Press</pub><doi>10.1086/694837</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-8248
ispartof Philosophy of science, 2018-01, Vol.85 (1), p.79-101
issn 0031-8248
1539-767X
language eng
recordid cdi_crossref_primary_10_1086_694837
source JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete
subjects Bayesian analysis
Cognitive ability
Computer applications
Empirical analysis
Mathematical models
Probabilistic inference
Probability
Rationality
Thermodynamics
title Bayes, Bounds, and Rational Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayes,%20Bounds,%20and%20Rational%20Analysis&rft.jtitle=Philosophy%20of%20science&rft.au=Icard,%20Thomas%20F.&rft.date=2018-01-01&rft.volume=85&rft.issue=1&rft.spage=79&rft.epage=101&rft.pages=79-101&rft.issn=0031-8248&rft.eissn=1539-767X&rft_id=info:doi/10.1086/694837&rft_dat=%3Cjstor_cross%3E26551910%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994689295&rft_id=info:pmid/&rft_jstor_id=26551910&rfr_iscdi=true