Bayes, Bounds, and Rational Analysis
While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzle...
Gespeichert in:
Veröffentlicht in: | Philosophy of science 2018-01, Vol.85 (1), p.79-101 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Philosophy of science |
container_volume | 85 |
creator | Icard, Thomas F. |
description | While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics. |
doi_str_mv | 10.1086/694837 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_694837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26551910</jstor_id><sourcerecordid>26551910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</originalsourceid><addsrcrecordid>eNpF0EtLw0AUBeBBFKxV_4FQsLgyeu9MMplZtsUXFARRcBcm89CU2qlzk0X_vZFI3dyz-ThcDmPnCDcISt5KnStRHrARFkJnpSzfD9kIQGCmeK6O2QnRCgBRgRqx6dzsPF1P5rHbuD7Nxk1eTNvEjVlPZv3ZUUOn7CiYNfmzvxyzt_u718Vjtnx-eFrMlpkVwNuMQ9DeoPPc5rUSwilfOGOCK0ssOHitA4dchjrUyEUtvK0dSuu80LUNnosxuxx6tyl-d57aahW71D9BFWqdS6W5Lnp1NSibIlHyodqm5sukXYVQ_S5QDQv0cDrAzn421nzEbfJE_517djGwFbUx7cu4LArUCOIHLiNiKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994689295</pqid></control><display><type>article</type><title>Bayes, Bounds, and Rational Analysis</title><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Icard, Thomas F.</creator><creatorcontrib>Icard, Thomas F.</creatorcontrib><description>While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics.</description><identifier>ISSN: 0031-8248</identifier><identifier>EISSN: 1539-767X</identifier><identifier>DOI: 10.1086/694837</identifier><language>eng</language><publisher>Cambridge: University of Chicago Press</publisher><subject>Bayesian analysis ; Cognitive ability ; Computer applications ; Empirical analysis ; Mathematical models ; Probabilistic inference ; Probability ; Rationality ; Thermodynamics</subject><ispartof>Philosophy of science, 2018-01, Vol.85 (1), p.79-101</ispartof><rights>Copyright 2018 by the Philosophy of Science Association</rights><rights>Copyright 2018 by the Philosophy of Science Association. All rights reserved.</rights><rights>Copyright University of Chicago, acting through its Press Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</citedby><cites>FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26551910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26551910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27922,27923,58015,58248</link.rule.ids></links><search><creatorcontrib>Icard, Thomas F.</creatorcontrib><title>Bayes, Bounds, and Rational Analysis</title><title>Philosophy of science</title><description>While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics.</description><subject>Bayesian analysis</subject><subject>Cognitive ability</subject><subject>Computer applications</subject><subject>Empirical analysis</subject><subject>Mathematical models</subject><subject>Probabilistic inference</subject><subject>Probability</subject><subject>Rationality</subject><subject>Thermodynamics</subject><issn>0031-8248</issn><issn>1539-767X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpF0EtLw0AUBeBBFKxV_4FQsLgyeu9MMplZtsUXFARRcBcm89CU2qlzk0X_vZFI3dyz-ThcDmPnCDcISt5KnStRHrARFkJnpSzfD9kIQGCmeK6O2QnRCgBRgRqx6dzsPF1P5rHbuD7Nxk1eTNvEjVlPZv3ZUUOn7CiYNfmzvxyzt_u718Vjtnx-eFrMlpkVwNuMQ9DeoPPc5rUSwilfOGOCK0ssOHitA4dchjrUyEUtvK0dSuu80LUNnosxuxx6tyl-d57aahW71D9BFWqdS6W5Lnp1NSibIlHyodqm5sukXYVQ_S5QDQv0cDrAzn421nzEbfJE_517djGwFbUx7cu4LArUCOIHLiNiKg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Icard, Thomas F.</creator><general>University of Chicago Press</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20180101</creationdate><title>Bayes, Bounds, and Rational Analysis</title><author>Icard, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-20f9ea1de2c4b833d8e5daafd771520e99f2046fbfb123b3ecbd16cde39bcfe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Cognitive ability</topic><topic>Computer applications</topic><topic>Empirical analysis</topic><topic>Mathematical models</topic><topic>Probabilistic inference</topic><topic>Probability</topic><topic>Rationality</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Icard, Thomas F.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Icard, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayes, Bounds, and Rational Analysis</atitle><jtitle>Philosophy of science</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>85</volume><issue>1</issue><spage>79</spage><epage>101</epage><pages>79-101</pages><issn>0031-8248</issn><eissn>1539-767X</eissn><abstract>While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under which (approximately) Bayesian agents would be rational. The proposal is illustrated with a characterization of costs inspired by thermodynamics.</abstract><cop>Cambridge</cop><pub>University of Chicago Press</pub><doi>10.1086/694837</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8248 |
ispartof | Philosophy of science, 2018-01, Vol.85 (1), p.79-101 |
issn | 0031-8248 1539-767X |
language | eng |
recordid | cdi_crossref_primary_10_1086_694837 |
source | JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
subjects | Bayesian analysis Cognitive ability Computer applications Empirical analysis Mathematical models Probabilistic inference Probability Rationality Thermodynamics |
title | Bayes, Bounds, and Rational Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayes,%20Bounds,%20and%20Rational%20Analysis&rft.jtitle=Philosophy%20of%20science&rft.au=Icard,%20Thomas%20F.&rft.date=2018-01-01&rft.volume=85&rft.issue=1&rft.spage=79&rft.epage=101&rft.pages=79-101&rft.issn=0031-8248&rft.eissn=1539-767X&rft_id=info:doi/10.1086/694837&rft_dat=%3Cjstor_cross%3E26551910%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994689295&rft_id=info:pmid/&rft_jstor_id=26551910&rfr_iscdi=true |