Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load

The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2017-04, Vol.189 (4), p.368-380
Hauptverfasser: Gilbert, Kimberly J., Sharp, Nathaniel P., Angert, Amy L., Conte, Gina L., Draghi, Jeremy A., Guillaume, Frédéric, Hargreaves, Anna L., Matthey-Doret, Remi, Whitlock, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 4
container_start_page 368
container_title The American naturalist
container_volume 189
creator Gilbert, Kimberly J.
Sharp, Nathaniel P.
Angert, Amy L.
Conte, Gina L.
Draghi, Jeremy A.
Guillaume, Frédéric
Hargreaves, Anna L.
Matthey-Doret, Remi
Whitlock, Michael C.
description The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.
doi_str_mv 10.1086/690673
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_690673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26519394</jstor_id><sourcerecordid>26519394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</originalsourceid><addsrcrecordid>eNqN0V1LwzAUBuAgiptT_4FSUGQ31Xw0X5djTB0UBNHrkqbp1rE1NWlR_70ZnRt45U1COA_nTXIAuETwHkHBHpiEjJMjMESU8JgSTI7BEEJIYogSPgBn3q_CUSaSnoIBFoRCCuEQzFKr1TqaFKppVVvZOprXrXFKtz76rNplNPtqVO23hdSqIio6V9WL6FXVC3OonYOTUq29udjtI_D-OHubPsfpy9N8OkljTQRrY6E5pSaXgmGNtaClYlwQUkJteC5hQZlAOWR5WGhOuNACiZwoxhLEJYaYjMC479s4-9EZ32abymuzXqva2M5nSEgkKOVU_IMKDEM4JoHe_KEr27k6PGSrKCZJuEdQd73SznrvTJk1rtoo950hmG1nkPUzCPB6167LN6bYs99PD-C2B51eVlotbOOM94fQfZ_xP1jWFGWgVz1d-da6QyKjSBKZkB83OqHp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885234818</pqid></control><display><type>article</type><title>Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gilbert, Kimberly J. ; Sharp, Nathaniel P. ; Angert, Amy L. ; Conte, Gina L. ; Draghi, Jeremy A. ; Guillaume, Frédéric ; Hargreaves, Anna L. ; Matthey-Doret, Remi ; Whitlock, Michael C.</creator><contributor>Charles F. Baer ; Alice A. Winn</contributor><creatorcontrib>Gilbert, Kimberly J. ; Sharp, Nathaniel P. ; Angert, Amy L. ; Conte, Gina L. ; Draghi, Jeremy A. ; Guillaume, Frédéric ; Hargreaves, Anna L. ; Matthey-Doret, Remi ; Whitlock, Michael C. ; Charles F. Baer ; Alice A. Winn</creatorcontrib><description>The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/690673</identifier><identifier>PMID: 28350500</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Acclimatization ; Adaptation ; Adaptation, Physiological ; Climate ; Climate Change ; Genetic Drift ; Genetics ; Impact analysis</subject><ispartof>The American naturalist, 2017-04, Vol.189 (4), p.368-380</ispartof><rights>2017 by The University of Chicago</rights><rights>2017 by The University of Chicago. All rights reserved. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-commercial reuse of the work with attribution. For commercial use, contact .</rights><rights>Copyright University of Chicago, acting through its Press Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</citedby><cites>FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26519394$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26519394$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28350500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Charles F. Baer</contributor><contributor>Alice A. Winn</contributor><creatorcontrib>Gilbert, Kimberly J.</creatorcontrib><creatorcontrib>Sharp, Nathaniel P.</creatorcontrib><creatorcontrib>Angert, Amy L.</creatorcontrib><creatorcontrib>Conte, Gina L.</creatorcontrib><creatorcontrib>Draghi, Jeremy A.</creatorcontrib><creatorcontrib>Guillaume, Frédéric</creatorcontrib><creatorcontrib>Hargreaves, Anna L.</creatorcontrib><creatorcontrib>Matthey-Doret, Remi</creatorcontrib><creatorcontrib>Whitlock, Michael C.</creatorcontrib><title>Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.</description><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Genetic Drift</subject><subject>Genetics</subject><subject>Impact analysis</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1LwzAUBuAgiptT_4FSUGQ31Xw0X5djTB0UBNHrkqbp1rE1NWlR_70ZnRt45U1COA_nTXIAuETwHkHBHpiEjJMjMESU8JgSTI7BEEJIYogSPgBn3q_CUSaSnoIBFoRCCuEQzFKr1TqaFKppVVvZOprXrXFKtz76rNplNPtqVO23hdSqIio6V9WL6FXVC3OonYOTUq29udjtI_D-OHubPsfpy9N8OkljTQRrY6E5pSaXgmGNtaClYlwQUkJteC5hQZlAOWR5WGhOuNACiZwoxhLEJYaYjMC479s4-9EZ32abymuzXqva2M5nSEgkKOVU_IMKDEM4JoHe_KEr27k6PGSrKCZJuEdQd73SznrvTJk1rtoo950hmG1nkPUzCPB6167LN6bYs99PD-C2B51eVlotbOOM94fQfZ_xP1jWFGWgVz1d-da6QyKjSBKZkB83OqHp</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Gilbert, Kimberly J.</creator><creator>Sharp, Nathaniel P.</creator><creator>Angert, Amy L.</creator><creator>Conte, Gina L.</creator><creator>Draghi, Jeremy A.</creator><creator>Guillaume, Frédéric</creator><creator>Hargreaves, Anna L.</creator><creator>Matthey-Doret, Remi</creator><creator>Whitlock, Michael C.</creator><general>The University of Chicago Press</general><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Local Adaptation Interacts with Expansion Load during Range Expansion</title><author>Gilbert, Kimberly J. ; Sharp, Nathaniel P. ; Angert, Amy L. ; Conte, Gina L. ; Draghi, Jeremy A. ; Guillaume, Frédéric ; Hargreaves, Anna L. ; Matthey-Doret, Remi ; Whitlock, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Genetic Drift</topic><topic>Genetics</topic><topic>Impact analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert, Kimberly J.</creatorcontrib><creatorcontrib>Sharp, Nathaniel P.</creatorcontrib><creatorcontrib>Angert, Amy L.</creatorcontrib><creatorcontrib>Conte, Gina L.</creatorcontrib><creatorcontrib>Draghi, Jeremy A.</creatorcontrib><creatorcontrib>Guillaume, Frédéric</creatorcontrib><creatorcontrib>Hargreaves, Anna L.</creatorcontrib><creatorcontrib>Matthey-Doret, Remi</creatorcontrib><creatorcontrib>Whitlock, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert, Kimberly J.</au><au>Sharp, Nathaniel P.</au><au>Angert, Amy L.</au><au>Conte, Gina L.</au><au>Draghi, Jeremy A.</au><au>Guillaume, Frédéric</au><au>Hargreaves, Anna L.</au><au>Matthey-Doret, Remi</au><au>Whitlock, Michael C.</au><au>Charles F. Baer</au><au>Alice A. Winn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>189</volume><issue>4</issue><spage>368</spage><epage>380</epage><pages>368-380</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>28350500</pmid><doi>10.1086/690673</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2017-04, Vol.189 (4), p.368-380
issn 0003-0147
1537-5323
language eng
recordid cdi_crossref_primary_10_1086_690673
source MEDLINE; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals
subjects Acclimatization
Adaptation
Adaptation, Physiological
Climate
Climate Change
Genetic Drift
Genetics
Impact analysis
title Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Adaptation%20Interacts%20with%20Expansion%20Load%20during%20Range%20Expansion:%20Maladaptation%20Reduces%20Expansion%20Load&rft.jtitle=The%20American%20naturalist&rft.au=Gilbert,%20Kimberly%20J.&rft.date=2017-04-01&rft.volume=189&rft.issue=4&rft.spage=368&rft.epage=380&rft.pages=368-380&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/690673&rft_dat=%3Cjstor_cross%3E26519394%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885234818&rft_id=info:pmid/28350500&rft_jstor_id=26519394&rfr_iscdi=true