Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load
The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion...
Gespeichert in:
Veröffentlicht in: | The American naturalist 2017-04, Vol.189 (4), p.368-380 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 4 |
container_start_page | 368 |
container_title | The American naturalist |
container_volume | 189 |
creator | Gilbert, Kimberly J. Sharp, Nathaniel P. Angert, Amy L. Conte, Gina L. Draghi, Jeremy A. Guillaume, Frédéric Hargreaves, Anna L. Matthey-Doret, Remi Whitlock, Michael C. |
description | The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations. |
doi_str_mv | 10.1086/690673 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_690673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26519394</jstor_id><sourcerecordid>26519394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</originalsourceid><addsrcrecordid>eNqN0V1LwzAUBuAgiptT_4FSUGQ31Xw0X5djTB0UBNHrkqbp1rE1NWlR_70ZnRt45U1COA_nTXIAuETwHkHBHpiEjJMjMESU8JgSTI7BEEJIYogSPgBn3q_CUSaSnoIBFoRCCuEQzFKr1TqaFKppVVvZOprXrXFKtz76rNplNPtqVO23hdSqIio6V9WL6FXVC3OonYOTUq29udjtI_D-OHubPsfpy9N8OkljTQRrY6E5pSaXgmGNtaClYlwQUkJteC5hQZlAOWR5WGhOuNACiZwoxhLEJYaYjMC479s4-9EZ32abymuzXqva2M5nSEgkKOVU_IMKDEM4JoHe_KEr27k6PGSrKCZJuEdQd73SznrvTJk1rtoo950hmG1nkPUzCPB6167LN6bYs99PD-C2B51eVlotbOOM94fQfZ_xP1jWFGWgVz1d-da6QyKjSBKZkB83OqHp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885234818</pqid></control><display><type>article</type><title>Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gilbert, Kimberly J. ; Sharp, Nathaniel P. ; Angert, Amy L. ; Conte, Gina L. ; Draghi, Jeremy A. ; Guillaume, Frédéric ; Hargreaves, Anna L. ; Matthey-Doret, Remi ; Whitlock, Michael C.</creator><contributor>Charles F. Baer ; Alice A. Winn</contributor><creatorcontrib>Gilbert, Kimberly J. ; Sharp, Nathaniel P. ; Angert, Amy L. ; Conte, Gina L. ; Draghi, Jeremy A. ; Guillaume, Frédéric ; Hargreaves, Anna L. ; Matthey-Doret, Remi ; Whitlock, Michael C. ; Charles F. Baer ; Alice A. Winn</creatorcontrib><description>The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/690673</identifier><identifier>PMID: 28350500</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>United States: The University of Chicago Press</publisher><subject>Acclimatization ; Adaptation ; Adaptation, Physiological ; Climate ; Climate Change ; Genetic Drift ; Genetics ; Impact analysis</subject><ispartof>The American naturalist, 2017-04, Vol.189 (4), p.368-380</ispartof><rights>2017 by The University of Chicago</rights><rights>2017 by The University of Chicago. All rights reserved. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-commercial reuse of the work with attribution. For commercial use, contact .</rights><rights>Copyright University of Chicago, acting through its Press Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</citedby><cites>FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26519394$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26519394$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28350500$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Charles F. Baer</contributor><contributor>Alice A. Winn</contributor><creatorcontrib>Gilbert, Kimberly J.</creatorcontrib><creatorcontrib>Sharp, Nathaniel P.</creatorcontrib><creatorcontrib>Angert, Amy L.</creatorcontrib><creatorcontrib>Conte, Gina L.</creatorcontrib><creatorcontrib>Draghi, Jeremy A.</creatorcontrib><creatorcontrib>Guillaume, Frédéric</creatorcontrib><creatorcontrib>Hargreaves, Anna L.</creatorcontrib><creatorcontrib>Matthey-Doret, Remi</creatorcontrib><creatorcontrib>Whitlock, Michael C.</creatorcontrib><title>Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.</description><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Genetic Drift</subject><subject>Genetics</subject><subject>Impact analysis</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1LwzAUBuAgiptT_4FSUGQ31Xw0X5djTB0UBNHrkqbp1rE1NWlR_70ZnRt45U1COA_nTXIAuETwHkHBHpiEjJMjMESU8JgSTI7BEEJIYogSPgBn3q_CUSaSnoIBFoRCCuEQzFKr1TqaFKppVVvZOprXrXFKtz76rNplNPtqVO23hdSqIio6V9WL6FXVC3OonYOTUq29udjtI_D-OHubPsfpy9N8OkljTQRrY6E5pSaXgmGNtaClYlwQUkJteC5hQZlAOWR5WGhOuNACiZwoxhLEJYaYjMC479s4-9EZ32abymuzXqva2M5nSEgkKOVU_IMKDEM4JoHe_KEr27k6PGSrKCZJuEdQd73SznrvTJk1rtoo950hmG1nkPUzCPB6167LN6bYs99PD-C2B51eVlotbOOM94fQfZ_xP1jWFGWgVz1d-da6QyKjSBKZkB83OqHp</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Gilbert, Kimberly J.</creator><creator>Sharp, Nathaniel P.</creator><creator>Angert, Amy L.</creator><creator>Conte, Gina L.</creator><creator>Draghi, Jeremy A.</creator><creator>Guillaume, Frédéric</creator><creator>Hargreaves, Anna L.</creator><creator>Matthey-Doret, Remi</creator><creator>Whitlock, Michael C.</creator><general>The University of Chicago Press</general><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Local Adaptation Interacts with Expansion Load during Range Expansion</title><author>Gilbert, Kimberly J. ; Sharp, Nathaniel P. ; Angert, Amy L. ; Conte, Gina L. ; Draghi, Jeremy A. ; Guillaume, Frédéric ; Hargreaves, Anna L. ; Matthey-Doret, Remi ; Whitlock, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8c755eb9862c2c85fa67833f0ce7b90d5681b06b1b05b378c818b3a6641792023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Genetic Drift</topic><topic>Genetics</topic><topic>Impact analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert, Kimberly J.</creatorcontrib><creatorcontrib>Sharp, Nathaniel P.</creatorcontrib><creatorcontrib>Angert, Amy L.</creatorcontrib><creatorcontrib>Conte, Gina L.</creatorcontrib><creatorcontrib>Draghi, Jeremy A.</creatorcontrib><creatorcontrib>Guillaume, Frédéric</creatorcontrib><creatorcontrib>Hargreaves, Anna L.</creatorcontrib><creatorcontrib>Matthey-Doret, Remi</creatorcontrib><creatorcontrib>Whitlock, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert, Kimberly J.</au><au>Sharp, Nathaniel P.</au><au>Angert, Amy L.</au><au>Conte, Gina L.</au><au>Draghi, Jeremy A.</au><au>Guillaume, Frédéric</au><au>Hargreaves, Anna L.</au><au>Matthey-Doret, Remi</au><au>Whitlock, Michael C.</au><au>Charles F. Baer</au><au>Alice A. Winn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>189</volume><issue>4</issue><spage>368</spage><epage>380</epage><pages>368-380</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>The biotic and abiotic factors that facilitate or hinder species range expansions are many and complex. We examine the impact of two genetic processes and their interaction on fitness at expanding range edges: local maladaptation resulting from the presence of an environmental gradient and expansion load resulting from increased genetic drift at the range edge. Results from spatially explicit simulations indicate that the presence of an environmental gradient during range expansion reduces expansion load; conversely, increasing expansion load allows only locally adapted populations to persist at the range edge. Increased maladaptation reduces the speed of range expansion, resulting in less genetic drift at the expanding front and more immigration from the range center, therefore reducing expansion load at the range edge. These results may have ramifications for species being forced to shift their ranges because of climate change or other anthropogenic changes. If rapidly changing climate leads to faster expansion as populations track their shifting climatic optima, populations may suffer increased expansion load beyond previous expectations.</abstract><cop>United States</cop><pub>The University of Chicago Press</pub><pmid>28350500</pmid><doi>10.1086/690673</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0147 |
ispartof | The American naturalist, 2017-04, Vol.189 (4), p.368-380 |
issn | 0003-0147 1537-5323 |
language | eng |
recordid | cdi_crossref_primary_10_1086_690673 |
source | MEDLINE; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals |
subjects | Acclimatization Adaptation Adaptation, Physiological Climate Climate Change Genetic Drift Genetics Impact analysis |
title | Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Adaptation%20Interacts%20with%20Expansion%20Load%20during%20Range%20Expansion:%20Maladaptation%20Reduces%20Expansion%20Load&rft.jtitle=The%20American%20naturalist&rft.au=Gilbert,%20Kimberly%20J.&rft.date=2017-04-01&rft.volume=189&rft.issue=4&rft.spage=368&rft.epage=380&rft.pages=368-380&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/690673&rft_dat=%3Cjstor_cross%3E26519394%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885234818&rft_id=info:pmid/28350500&rft_jstor_id=26519394&rfr_iscdi=true |