Paleozoic Subduction-Accretion-Closure Histories in the West Mongolian Segment of the Paleo-Asian Ocean: Evidence from Pressure-Temperature-Time-Protolith Evolution of High-Mg and -Al Gneisses in the Altai Mountains
High-Mg, high-Al metasedimentary gneisses from the Altai Mountains, Mongolia, belonging to a subduction-accretion complex within the Central Asian Orogenic Belt can be divided into five rock types on the basis of mineral assemblages. Most rock types have high MgO and Al2O3content and low CaO, Na2O,...
Gespeichert in:
Veröffentlicht in: | The Journal of geology 2014-05, Vol.122 (3), p.283-308 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 3 |
container_start_page | 283 |
container_title | The Journal of geology |
container_volume | 122 |
creator | Nakano, Nobuhiko Osanai, Yasuhito Satish-Kumar, M. Adachi, Tatsuro Owada, Masaaki Jargalan, Sereenen Boldbaatar, Chimedtseie Yoshimoto, Aya Syeryekhan, Kundyz |
description | High-Mg, high-Al metasedimentary gneisses from the Altai Mountains, Mongolia, belonging to a subduction-accretion complex within the Central Asian Orogenic Belt can be divided into five rock types on the basis of mineral assemblages. Most rock types have high MgO and Al2O3content and low CaO, Na2O, Rb, and Sr content. All rock types experienced a similar medium-pressure metamorphism characterized by a “hairpin”-shaped counterclockwise pressure-temperature path. U-Pb zircon and U-Th-Pb monazite ages indicated metamorphism at ca. 356 Ma and 277 Ma and inherited ages of 510–379 Ma, suggesting possible provenance to granitoids comparable to those in the Altai Mountains, China. The zircons that newly nucleated at ca. 356 Ma are characterized by high concentrations of light rare earth elements without a Ce anomaly—features common in zircons from hydrothermally altered rocks and a reducing environment. Petrological and geochronological results in this study suggest the following tectonic evolution: (1) continuous subduction and accretion of paleo-Asian oceanic crust during the Early Paleozoic, resulting in periodic granitoid magmatism in the period 510–380 Ma and a continuous supply of granite-derived sediments providing detrital zircon and monazite grains to the accretionary prism; (2) ridge subduction during the Late Devonian–Early Carboniferous (ca. 356 Ma), resulting in hydrothermal metamorphism of the accretionary prism and interaction with seawater that produced rocks with unusual whole-rock chemistry; and (3) closure of the ocean leading to continental collision in the Early Permian (ca. 277 Ma), with part of the accretionary prism squeezed into lower crustal levels to form medium-pressure metamorphic rocks. |
doi_str_mv | 10.1086/675665 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_675665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/675665</jstor_id><sourcerecordid>10.1086/675665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3543060e9cc384ae8a40768b7da6cfb8c7585b1b5b9b51eab39604c4b17a33293</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhk1podu0fQZBS8lFjWRZkt2bWdJsISELSenRyPLYq8WWXEkOtC_a16m9W7oQCOQ0A_Pp089Mkryn5DMlubgQkgvBXyQrypnEPBXFy2RFSJpiyqR4nbwJYU8IZSknq-TPVvXgfjuj0d1UN5OOxllcau3h0K17FyYPaGNCdN5AQMaiuAP0A0JEN852rjfKojvoBrARufYwPVhxGZbRrQZlv6DLB9OA1YBa7wa09RAWMb6HYQSv4qE3A-Ctd3F2xt38wvXTkmKxbky3wzcdUrZBuOzRlQUTwilP2Udl5kCTnasNb5NXreoDvPtXz5LvXy_v1xt8fXv1bV1eY51lJGLGM0YEgUJrlmcKcpURKfJaNkrots615Dmvac3rouYUVM0KQTKd1VQqxtKCnSXnR-_o3c9p3kk1mKCh75UFN4WK5iRnkkrCZvTDI3TvJm_ndNVyKcaloIvw05HS3oXgoa1Gbwblf1WUVMt9q-N9Z_DjEZz0zmjVuXFZ6cn5Hzt_BlaNTXsKuF9u_dS_fwFiccAy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1537357619</pqid></control><display><type>article</type><title>Paleozoic Subduction-Accretion-Closure Histories in the West Mongolian Segment of the Paleo-Asian Ocean: Evidence from Pressure-Temperature-Time-Protolith Evolution of High-Mg and -Al Gneisses in the Altai Mountains</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Nakano, Nobuhiko ; Osanai, Yasuhito ; Satish-Kumar, M. ; Adachi, Tatsuro ; Owada, Masaaki ; Jargalan, Sereenen ; Boldbaatar, Chimedtseie ; Yoshimoto, Aya ; Syeryekhan, Kundyz</creator><creatorcontrib>Nakano, Nobuhiko ; Osanai, Yasuhito ; Satish-Kumar, M. ; Adachi, Tatsuro ; Owada, Masaaki ; Jargalan, Sereenen ; Boldbaatar, Chimedtseie ; Yoshimoto, Aya ; Syeryekhan, Kundyz</creatorcontrib><description>High-Mg, high-Al metasedimentary gneisses from the Altai Mountains, Mongolia, belonging to a subduction-accretion complex within the Central Asian Orogenic Belt can be divided into five rock types on the basis of mineral assemblages. Most rock types have high MgO and Al2O3content and low CaO, Na2O, Rb, and Sr content. All rock types experienced a similar medium-pressure metamorphism characterized by a “hairpin”-shaped counterclockwise pressure-temperature path. U-Pb zircon and U-Th-Pb monazite ages indicated metamorphism at ca. 356 Ma and 277 Ma and inherited ages of 510–379 Ma, suggesting possible provenance to granitoids comparable to those in the Altai Mountains, China. The zircons that newly nucleated at ca. 356 Ma are characterized by high concentrations of light rare earth elements without a Ce anomaly—features common in zircons from hydrothermally altered rocks and a reducing environment. Petrological and geochronological results in this study suggest the following tectonic evolution: (1) continuous subduction and accretion of paleo-Asian oceanic crust during the Early Paleozoic, resulting in periodic granitoid magmatism in the period 510–380 Ma and a continuous supply of granite-derived sediments providing detrital zircon and monazite grains to the accretionary prism; (2) ridge subduction during the Late Devonian–Early Carboniferous (ca. 356 Ma), resulting in hydrothermal metamorphism of the accretionary prism and interaction with seawater that produced rocks with unusual whole-rock chemistry; and (3) closure of the ocean leading to continental collision in the Early Permian (ca. 277 Ma), with part of the accretionary prism squeezed into lower crustal levels to form medium-pressure metamorphic rocks.</description><identifier>ISSN: 0022-1376</identifier><identifier>EISSN: 1537-5269</identifier><identifier>DOI: 10.1086/675665</identifier><identifier>CODEN: JGEOAZ</identifier><language>eng</language><publisher>Chicago: University of Chicago Press</publisher><subject>Biotite ; Cordierite ; Garnets ; Geology ; Gneiss ; Kyanite ; Marine ; Metamorphism ; Minerals ; Monazites ; Pressure ; Quartz ; Rocks ; Temperature</subject><ispartof>The Journal of geology, 2014-05, Vol.122 (3), p.283-308</ispartof><rights>2014 by The University of Chicago. All rights reserved.</rights><rights>Copyright University of Chicago, acting through its Press May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3543060e9cc384ae8a40768b7da6cfb8c7585b1b5b9b51eab39604c4b17a33293</citedby><cites>FETCH-LOGICAL-c440t-3543060e9cc384ae8a40768b7da6cfb8c7585b1b5b9b51eab39604c4b17a33293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,804,27928,27929</link.rule.ids></links><search><creatorcontrib>Nakano, Nobuhiko</creatorcontrib><creatorcontrib>Osanai, Yasuhito</creatorcontrib><creatorcontrib>Satish-Kumar, M.</creatorcontrib><creatorcontrib>Adachi, Tatsuro</creatorcontrib><creatorcontrib>Owada, Masaaki</creatorcontrib><creatorcontrib>Jargalan, Sereenen</creatorcontrib><creatorcontrib>Boldbaatar, Chimedtseie</creatorcontrib><creatorcontrib>Yoshimoto, Aya</creatorcontrib><creatorcontrib>Syeryekhan, Kundyz</creatorcontrib><title>Paleozoic Subduction-Accretion-Closure Histories in the West Mongolian Segment of the Paleo-Asian Ocean: Evidence from Pressure-Temperature-Time-Protolith Evolution of High-Mg and -Al Gneisses in the Altai Mountains</title><title>The Journal of geology</title><description>High-Mg, high-Al metasedimentary gneisses from the Altai Mountains, Mongolia, belonging to a subduction-accretion complex within the Central Asian Orogenic Belt can be divided into five rock types on the basis of mineral assemblages. Most rock types have high MgO and Al2O3content and low CaO, Na2O, Rb, and Sr content. All rock types experienced a similar medium-pressure metamorphism characterized by a “hairpin”-shaped counterclockwise pressure-temperature path. U-Pb zircon and U-Th-Pb monazite ages indicated metamorphism at ca. 356 Ma and 277 Ma and inherited ages of 510–379 Ma, suggesting possible provenance to granitoids comparable to those in the Altai Mountains, China. The zircons that newly nucleated at ca. 356 Ma are characterized by high concentrations of light rare earth elements without a Ce anomaly—features common in zircons from hydrothermally altered rocks and a reducing environment. Petrological and geochronological results in this study suggest the following tectonic evolution: (1) continuous subduction and accretion of paleo-Asian oceanic crust during the Early Paleozoic, resulting in periodic granitoid magmatism in the period 510–380 Ma and a continuous supply of granite-derived sediments providing detrital zircon and monazite grains to the accretionary prism; (2) ridge subduction during the Late Devonian–Early Carboniferous (ca. 356 Ma), resulting in hydrothermal metamorphism of the accretionary prism and interaction with seawater that produced rocks with unusual whole-rock chemistry; and (3) closure of the ocean leading to continental collision in the Early Permian (ca. 277 Ma), with part of the accretionary prism squeezed into lower crustal levels to form medium-pressure metamorphic rocks.</description><subject>Biotite</subject><subject>Cordierite</subject><subject>Garnets</subject><subject>Geology</subject><subject>Gneiss</subject><subject>Kyanite</subject><subject>Marine</subject><subject>Metamorphism</subject><subject>Minerals</subject><subject>Monazites</subject><subject>Pressure</subject><subject>Quartz</subject><subject>Rocks</subject><subject>Temperature</subject><issn>0022-1376</issn><issn>1537-5269</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhk1podu0fQZBS8lFjWRZkt2bWdJsISELSenRyPLYq8WWXEkOtC_a16m9W7oQCOQ0A_Pp089Mkryn5DMlubgQkgvBXyQrypnEPBXFy2RFSJpiyqR4nbwJYU8IZSknq-TPVvXgfjuj0d1UN5OOxllcau3h0K17FyYPaGNCdN5AQMaiuAP0A0JEN852rjfKojvoBrARufYwPVhxGZbRrQZlv6DLB9OA1YBa7wa09RAWMb6HYQSv4qE3A-Ctd3F2xt38wvXTkmKxbky3wzcdUrZBuOzRlQUTwilP2Udl5kCTnasNb5NXreoDvPtXz5LvXy_v1xt8fXv1bV1eY51lJGLGM0YEgUJrlmcKcpURKfJaNkrots615Dmvac3rouYUVM0KQTKd1VQqxtKCnSXnR-_o3c9p3kk1mKCh75UFN4WK5iRnkkrCZvTDI3TvJm_ndNVyKcaloIvw05HS3oXgoa1Gbwblf1WUVMt9q-N9Z_DjEZz0zmjVuXFZ6cn5Hzt_BlaNTXsKuF9u_dS_fwFiccAy</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Nakano, Nobuhiko</creator><creator>Osanai, Yasuhito</creator><creator>Satish-Kumar, M.</creator><creator>Adachi, Tatsuro</creator><creator>Owada, Masaaki</creator><creator>Jargalan, Sereenen</creator><creator>Boldbaatar, Chimedtseie</creator><creator>Yoshimoto, Aya</creator><creator>Syeryekhan, Kundyz</creator><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20140501</creationdate><title>Paleozoic Subduction-Accretion-Closure Histories in the West Mongolian Segment of the Paleo-Asian Ocean: Evidence from Pressure-Temperature-Time-Protolith Evolution of High-Mg and -Al Gneisses in the Altai Mountains</title><author>Nakano, Nobuhiko ; Osanai, Yasuhito ; Satish-Kumar, M. ; Adachi, Tatsuro ; Owada, Masaaki ; Jargalan, Sereenen ; Boldbaatar, Chimedtseie ; Yoshimoto, Aya ; Syeryekhan, Kundyz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3543060e9cc384ae8a40768b7da6cfb8c7585b1b5b9b51eab39604c4b17a33293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biotite</topic><topic>Cordierite</topic><topic>Garnets</topic><topic>Geology</topic><topic>Gneiss</topic><topic>Kyanite</topic><topic>Marine</topic><topic>Metamorphism</topic><topic>Minerals</topic><topic>Monazites</topic><topic>Pressure</topic><topic>Quartz</topic><topic>Rocks</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakano, Nobuhiko</creatorcontrib><creatorcontrib>Osanai, Yasuhito</creatorcontrib><creatorcontrib>Satish-Kumar, M.</creatorcontrib><creatorcontrib>Adachi, Tatsuro</creatorcontrib><creatorcontrib>Owada, Masaaki</creatorcontrib><creatorcontrib>Jargalan, Sereenen</creatorcontrib><creatorcontrib>Boldbaatar, Chimedtseie</creatorcontrib><creatorcontrib>Yoshimoto, Aya</creatorcontrib><creatorcontrib>Syeryekhan, Kundyz</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakano, Nobuhiko</au><au>Osanai, Yasuhito</au><au>Satish-Kumar, M.</au><au>Adachi, Tatsuro</au><au>Owada, Masaaki</au><au>Jargalan, Sereenen</au><au>Boldbaatar, Chimedtseie</au><au>Yoshimoto, Aya</au><au>Syeryekhan, Kundyz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paleozoic Subduction-Accretion-Closure Histories in the West Mongolian Segment of the Paleo-Asian Ocean: Evidence from Pressure-Temperature-Time-Protolith Evolution of High-Mg and -Al Gneisses in the Altai Mountains</atitle><jtitle>The Journal of geology</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>122</volume><issue>3</issue><spage>283</spage><epage>308</epage><pages>283-308</pages><issn>0022-1376</issn><eissn>1537-5269</eissn><coden>JGEOAZ</coden><abstract>High-Mg, high-Al metasedimentary gneisses from the Altai Mountains, Mongolia, belonging to a subduction-accretion complex within the Central Asian Orogenic Belt can be divided into five rock types on the basis of mineral assemblages. Most rock types have high MgO and Al2O3content and low CaO, Na2O, Rb, and Sr content. All rock types experienced a similar medium-pressure metamorphism characterized by a “hairpin”-shaped counterclockwise pressure-temperature path. U-Pb zircon and U-Th-Pb monazite ages indicated metamorphism at ca. 356 Ma and 277 Ma and inherited ages of 510–379 Ma, suggesting possible provenance to granitoids comparable to those in the Altai Mountains, China. The zircons that newly nucleated at ca. 356 Ma are characterized by high concentrations of light rare earth elements without a Ce anomaly—features common in zircons from hydrothermally altered rocks and a reducing environment. Petrological and geochronological results in this study suggest the following tectonic evolution: (1) continuous subduction and accretion of paleo-Asian oceanic crust during the Early Paleozoic, resulting in periodic granitoid magmatism in the period 510–380 Ma and a continuous supply of granite-derived sediments providing detrital zircon and monazite grains to the accretionary prism; (2) ridge subduction during the Late Devonian–Early Carboniferous (ca. 356 Ma), resulting in hydrothermal metamorphism of the accretionary prism and interaction with seawater that produced rocks with unusual whole-rock chemistry; and (3) closure of the ocean leading to continental collision in the Early Permian (ca. 277 Ma), with part of the accretionary prism squeezed into lower crustal levels to form medium-pressure metamorphic rocks.</abstract><cop>Chicago</cop><pub>University of Chicago Press</pub><doi>10.1086/675665</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1376 |
ispartof | The Journal of geology, 2014-05, Vol.122 (3), p.283-308 |
issn | 0022-1376 1537-5269 |
language | eng |
recordid | cdi_crossref_primary_10_1086_675665 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Biotite Cordierite Garnets Geology Gneiss Kyanite Marine Metamorphism Minerals Monazites Pressure Quartz Rocks Temperature |
title | Paleozoic Subduction-Accretion-Closure Histories in the West Mongolian Segment of the Paleo-Asian Ocean: Evidence from Pressure-Temperature-Time-Protolith Evolution of High-Mg and -Al Gneisses in the Altai Mountains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paleozoic%20Subduction-Accretion-Closure%20Histories%20in%20the%20West%20Mongolian%20Segment%20of%20the%20Paleo-Asian%20Ocean:%20Evidence%20from%20Pressure-Temperature-Time-Protolith%20Evolution%20of%20High-Mg%20and%20-Al%20Gneisses%20in%20the%20Altai%20Mountains&rft.jtitle=The%20Journal%20of%20geology&rft.au=Nakano,%20Nobuhiko&rft.date=2014-05-01&rft.volume=122&rft.issue=3&rft.spage=283&rft.epage=308&rft.pages=283-308&rft.issn=0022-1376&rft.eissn=1537-5269&rft.coden=JGEOAZ&rft_id=info:doi/10.1086/675665&rft_dat=%3Cjstor_cross%3E10.1086/675665%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1537357619&rft_id=info:pmid/&rft_jstor_id=10.1086/675665&rfr_iscdi=true |