Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars

The influence of the first stars on the formation of second-generation objects at high redshift may be determined, in part, by their metal enrichment of surrounding gas. At a critical metallicity, Z sub(crit), primordial gas cools more efficiently by fine-structure lines of [C II] (157.74 km), [O I]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2006-05, Vol.643 (1), p.26-37
Hauptverfasser: Santoro, Fernando, Shull, J. Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 26
container_title The Astrophysical journal
container_volume 643
creator Santoro, Fernando
Shull, J. Michael
description The influence of the first stars on the formation of second-generation objects at high redshift may be determined, in part, by their metal enrichment of surrounding gas. At a critical metallicity, Z sub(crit), primordial gas cools more efficiently by fine-structure lines of [C II] (157.74 km), [O I] (63.18 km, 145.5 km), [Si II] (34.8 km), and [Fe II] (25.99 km, 35.35 km) than by H I or H sub(2) emission. This cooling may alter the process of fragmentation into smaller units. We study the time-dependent cooling of primordial gas enriched by heavy elements from early massive stars, particularly O, Si, and Fe. We define Z sub(crit) as the point when the total cooling rate by metals plus H sub(2) equals the adiabatic compressional heating. We explore two metallicity scenarios: (1) a single metallicity for all heavy elements and (2) individual metallicities (Z sub(C), Z sub(O), Z sub(Si), and Z sub(Fe)) from theoretical supernova yields. For dense gas (n,10 super(3) cm super(-3)) with metals in relative solar abundances, fragmentation occurs at Z sub(crit) - 10 super(-3.5) Z sub( ). However, for lower density gas (n = 1-100 cm super(-3)), particularly in halos enriched in Si, O, and Fe, we find Z sub(crit) - 0.1%-1% Z sub( ). The critical metallicity approaches a minimum value at high n set by efficient LTE cooling, with thermalized level populations of fine-structure states and H sub(2) rotational states (J = 2 and J = 3). Primordial clouds of 10 super(8) M sub( )at 200 K are detectable in redshifted fine-structure lines, with far-infrared fluxes between 10 super(-22) and 10 super(-21) W m super(-2). For metallicities Z sub(O) - 10 super(-3) and molecular fractions f super(H2) - 10 super(-3), the fine-structure emission lines of [O I], [Si II], and [Fe II] could be 10 super(2)-1 0 super(3) times stronger than the H sub(2) rotational lines at 28.22 km (J= 2 1 0) and 17.03 km (J = 3 1 1).
doi_str_mv 10.1086/501518
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_1086_501518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743150735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6bef076b8b37c950a796b14ac47b97098769fe91a2a32309bcec219385d5b5a23</originalsourceid><addsrcrecordid>eNp9kUFLAzEQhYMoWKv-hnhQ8bCabDbJ5iilrYKiUAVPhiSbpZHtbk2yh_57s7TQg-hpGOabx7w3AJxjdItRye4owhSXB2CEKSmzglB-CEYIoSJjhH8cg5MQvoY2F2IEPifeRWdUA59tVE3jjIsbqNoKzlxrs0X0vYm9t3C6ciG4roVdDV-9W3W-cmlrrgKctt6Zpa2g3sC4tGnThwgXUflwCo5q1QR7tqtj8D6bvk0esqeX-ePk_ikzBS9ixrStEWe61IQbQZHigmlcqDTVgiNRciZqK7DKFckJEtpYk2NBSlpRTVVOxuB6q7v23XdvQ5TpXGObRrW264PkBcEUcUITefUviUXBMWZiDxrfheBtLdfJtvIbiZEcgpbboBN4uVNUIQVZe9UaF_Y0F3lyMNx4seVct_5b6-Y3MzxLDr-TrCASy5zJdVWTH6hlkr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19471169</pqid></control><display><type>article</type><title>Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars</title><source>IOP Publishing Free Content</source><creator>Santoro, Fernando ; Shull, J. Michael</creator><creatorcontrib>Santoro, Fernando ; Shull, J. Michael</creatorcontrib><description>The influence of the first stars on the formation of second-generation objects at high redshift may be determined, in part, by their metal enrichment of surrounding gas. At a critical metallicity, Z sub(crit), primordial gas cools more efficiently by fine-structure lines of [C II] (157.74 km), [O I] (63.18 km, 145.5 km), [Si II] (34.8 km), and [Fe II] (25.99 km, 35.35 km) than by H I or H sub(2) emission. This cooling may alter the process of fragmentation into smaller units. We study the time-dependent cooling of primordial gas enriched by heavy elements from early massive stars, particularly O, Si, and Fe. We define Z sub(crit) as the point when the total cooling rate by metals plus H sub(2) equals the adiabatic compressional heating. We explore two metallicity scenarios: (1) a single metallicity for all heavy elements and (2) individual metallicities (Z sub(C), Z sub(O), Z sub(Si), and Z sub(Fe)) from theoretical supernova yields. For dense gas (n,10 super(3) cm super(-3)) with metals in relative solar abundances, fragmentation occurs at Z sub(crit) - 10 super(-3.5) Z sub( ). However, for lower density gas (n = 1-100 cm super(-3)), particularly in halos enriched in Si, O, and Fe, we find Z sub(crit) - 0.1%-1% Z sub( ). The critical metallicity approaches a minimum value at high n set by efficient LTE cooling, with thermalized level populations of fine-structure states and H sub(2) rotational states (J = 2 and J = 3). Primordial clouds of 10 super(8) M sub( )at 200 K are detectable in redshifted fine-structure lines, with far-infrared fluxes between 10 super(-22) and 10 super(-21) W m super(-2). For metallicities Z sub(O) - 10 super(-3) and molecular fractions f super(H2) - 10 super(-3), the fine-structure emission lines of [O I], [Si II], and [Fe II] could be 10 super(2)-1 0 super(3) times stronger than the H sub(2) rotational lines at 28.22 km (J= 2 1 0) and 17.03 km (J = 3 1 1).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/501518</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2006-05, Vol.643 (1), p.26-37</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6bef076b8b37c950a796b14ac47b97098769fe91a2a32309bcec219385d5b5a23</citedby><cites>FETCH-LOGICAL-c474t-6bef076b8b37c950a796b14ac47b97098769fe91a2a32309bcec219385d5b5a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/501518/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27605,27901,27902,53906</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/643/1/26$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17920982$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Santoro, Fernando</creatorcontrib><creatorcontrib>Shull, J. Michael</creatorcontrib><title>Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars</title><title>The Astrophysical journal</title><description>The influence of the first stars on the formation of second-generation objects at high redshift may be determined, in part, by their metal enrichment of surrounding gas. At a critical metallicity, Z sub(crit), primordial gas cools more efficiently by fine-structure lines of [C II] (157.74 km), [O I] (63.18 km, 145.5 km), [Si II] (34.8 km), and [Fe II] (25.99 km, 35.35 km) than by H I or H sub(2) emission. This cooling may alter the process of fragmentation into smaller units. We study the time-dependent cooling of primordial gas enriched by heavy elements from early massive stars, particularly O, Si, and Fe. We define Z sub(crit) as the point when the total cooling rate by metals plus H sub(2) equals the adiabatic compressional heating. We explore two metallicity scenarios: (1) a single metallicity for all heavy elements and (2) individual metallicities (Z sub(C), Z sub(O), Z sub(Si), and Z sub(Fe)) from theoretical supernova yields. For dense gas (n,10 super(3) cm super(-3)) with metals in relative solar abundances, fragmentation occurs at Z sub(crit) - 10 super(-3.5) Z sub( ). However, for lower density gas (n = 1-100 cm super(-3)), particularly in halos enriched in Si, O, and Fe, we find Z sub(crit) - 0.1%-1% Z sub( ). The critical metallicity approaches a minimum value at high n set by efficient LTE cooling, with thermalized level populations of fine-structure states and H sub(2) rotational states (J = 2 and J = 3). Primordial clouds of 10 super(8) M sub( )at 200 K are detectable in redshifted fine-structure lines, with far-infrared fluxes between 10 super(-22) and 10 super(-21) W m super(-2). For metallicities Z sub(O) - 10 super(-3) and molecular fractions f super(H2) - 10 super(-3), the fine-structure emission lines of [O I], [Si II], and [Fe II] could be 10 super(2)-1 0 super(3) times stronger than the H sub(2) rotational lines at 28.22 km (J= 2 1 0) and 17.03 km (J = 3 1 1).</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kUFLAzEQhYMoWKv-hnhQ8bCabDbJ5iilrYKiUAVPhiSbpZHtbk2yh_57s7TQg-hpGOabx7w3AJxjdItRye4owhSXB2CEKSmzglB-CEYIoSJjhH8cg5MQvoY2F2IEPifeRWdUA59tVE3jjIsbqNoKzlxrs0X0vYm9t3C6ciG4roVdDV-9W3W-cmlrrgKctt6Zpa2g3sC4tGnThwgXUflwCo5q1QR7tqtj8D6bvk0esqeX-ePk_ikzBS9ixrStEWe61IQbQZHigmlcqDTVgiNRciZqK7DKFckJEtpYk2NBSlpRTVVOxuB6q7v23XdvQ5TpXGObRrW264PkBcEUcUITefUviUXBMWZiDxrfheBtLdfJtvIbiZEcgpbboBN4uVNUIQVZe9UaF_Y0F3lyMNx4seVct_5b6-Y3MzxLDr-TrCASy5zJdVWTH6hlkr0</recordid><startdate>20060520</startdate><enddate>20060520</enddate><creator>Santoro, Fernando</creator><creator>Shull, J. Michael</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060520</creationdate><title>Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars</title><author>Santoro, Fernando ; Shull, J. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6bef076b8b37c950a796b14ac47b97098769fe91a2a32309bcec219385d5b5a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santoro, Fernando</creatorcontrib><creatorcontrib>Shull, J. Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santoro, Fernando</au><au>Shull, J. Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars</atitle><jtitle>The Astrophysical journal</jtitle><date>2006-05-20</date><risdate>2006</risdate><volume>643</volume><issue>1</issue><spage>26</spage><epage>37</epage><pages>26-37</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The influence of the first stars on the formation of second-generation objects at high redshift may be determined, in part, by their metal enrichment of surrounding gas. At a critical metallicity, Z sub(crit), primordial gas cools more efficiently by fine-structure lines of [C II] (157.74 km), [O I] (63.18 km, 145.5 km), [Si II] (34.8 km), and [Fe II] (25.99 km, 35.35 km) than by H I or H sub(2) emission. This cooling may alter the process of fragmentation into smaller units. We study the time-dependent cooling of primordial gas enriched by heavy elements from early massive stars, particularly O, Si, and Fe. We define Z sub(crit) as the point when the total cooling rate by metals plus H sub(2) equals the adiabatic compressional heating. We explore two metallicity scenarios: (1) a single metallicity for all heavy elements and (2) individual metallicities (Z sub(C), Z sub(O), Z sub(Si), and Z sub(Fe)) from theoretical supernova yields. For dense gas (n,10 super(3) cm super(-3)) with metals in relative solar abundances, fragmentation occurs at Z sub(crit) - 10 super(-3.5) Z sub( ). However, for lower density gas (n = 1-100 cm super(-3)), particularly in halos enriched in Si, O, and Fe, we find Z sub(crit) - 0.1%-1% Z sub( ). The critical metallicity approaches a minimum value at high n set by efficient LTE cooling, with thermalized level populations of fine-structure states and H sub(2) rotational states (J = 2 and J = 3). Primordial clouds of 10 super(8) M sub( )at 200 K are detectable in redshifted fine-structure lines, with far-infrared fluxes between 10 super(-22) and 10 super(-21) W m super(-2). For metallicities Z sub(O) - 10 super(-3) and molecular fractions f super(H2) - 10 super(-3), the fine-structure emission lines of [O I], [Si II], and [Fe II] could be 10 super(2)-1 0 super(3) times stronger than the H sub(2) rotational lines at 28.22 km (J= 2 1 0) and 17.03 km (J = 3 1 1).</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/501518</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2006-05, Vol.643 (1), p.26-37
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_1086_501518
source IOP Publishing Free Content
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
title Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Metallicity%20and%20Fine-Structure%20Emission%20of%20Primordial%20Gas%20Enriched%20by%20the%20First%20Stars&rft.jtitle=The%20Astrophysical%20journal&rft.au=Santoro,%20Fernando&rft.date=2006-05-20&rft.volume=643&rft.issue=1&rft.spage=26&rft.epage=37&rft.pages=26-37&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/501518&rft_dat=%3Cproquest_O3W%3E743150735%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19471169&rft_id=info:pmid/&rfr_iscdi=true