Using Incongruent Equilibrium Hydration Reactions to Model Latter‐Stage Crystallization in Plutons: Examples from the Bell Island Tonalite, Alaska
Models using hydration crystallization reactions (the reverse of dehydration melting reactions such as \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepacka...
Gespeichert in:
Veröffentlicht in: | The Journal of geology 2005-09, Vol.113 (5), p.589-599 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 5 |
container_start_page | 589 |
container_title | The Journal of geology |
container_volume | 113 |
creator | Beard, James S. Ragland, Paul C. Crawford, Maria L. |
description | Models using hydration crystallization reactions (the reverse of dehydration melting reactions such as
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{amph}\,+\mathrm{qtz}\,=\mathrm{px}\,+\mathrm{melt}\,$ \end{document}
) for the Bell Island pluton define incongruent equilibrium crystallization paths from hydrous
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{melt}\,+\mathrm{pyroxene}\,+\mathrm{Fe}\,$ \end{document}
‐Ti
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{oxides}\,+\mathrm{calcic}\,$ \end{document}
andesine (30%–50% solid) to a solid tonalite consisting mostly of hornblende, biotite, epidote, sodic andesine, and quartz. In essence, hydration crystallization is a way to quantify and modify the lower temperature end of Bowen’s discontinuous reaction series and apply it to natural samples. Hydration crystallization provides an alternative to crystal fractionation for explaining variations in pluton chemistry, especially the compositions of late plutonic melts. Another characteristic of hydrati |
doi_str_mv | 10.1086/431911 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1086_431911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/431911</jstor_id><sourcerecordid>10.1086/431911</sourcerecordid><originalsourceid>FETCH-LOGICAL-a422t-9a6e6d5d6ffd93c7fd5f593ffae933c8680e603f8a326d923ba81a31925eb30c3</originalsourceid><addsrcrecordid>eNpFkMGO0zAURS0EEqXAHyBZCLEiYPs1TsxuqDpMpSIQzKyj1-S54-LGHduRKCs-gcV8IV9CRkHD6t3FuUdPl7HnUryVotbvFiCNlA_YTJZQFaXS5iGbCaFUIaHSj9mTlPZCSFClmLHbq-T6HV_3beh3caA-89XN4LzbRjcc-MWpi5hd6PlXwvYuJJ4D_xQ68nyDOVP88-v3t4w74st4Shm9dz-nhuv5Fz_ksfKer37g4egpcRvDgedr4h_Ie75OHvuOX4Yevcv0hp95TN_xKXtk0Sd69u_O2dX56nJ5UWw-f1wvzzYFLpTKhUFNuis7bW1noK1sV9rSgLVIBqCtdS1IC7A1gtKdUbDFWuK4jippC6KFOXs5eY8x3AyUcrMPQxx_SY00i4WCatTN2esJamNIKZJtjtEdMJ4aKZq7wZtp8BF8NYFDe-1a3IVjpJT-K--xFxO2TznEexkIocGICv4CsryL2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194423759</pqid></control><display><type>article</type><title>Using Incongruent Equilibrium Hydration Reactions to Model Latter‐Stage Crystallization in Plutons: Examples from the Bell Island Tonalite, Alaska</title><source>Jstor Complete Legacy</source><creator>Beard, James S. ; Ragland, Paul C. ; Crawford, Maria L.</creator><creatorcontrib>Beard, James S. ; Ragland, Paul C. ; Crawford, Maria L.</creatorcontrib><description>Models using hydration crystallization reactions (the reverse of dehydration melting reactions such as
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{amph}\,+\mathrm{qtz}\,=\mathrm{px}\,+\mathrm{melt}\,$ \end{document}
) for the Bell Island pluton define incongruent equilibrium crystallization paths from hydrous
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{melt}\,+\mathrm{pyroxene}\,+\mathrm{Fe}\,$ \end{document}
‐Ti
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{oxides}\,+\mathrm{calcic}\,$ \end{document}
andesine (30%–50% solid) to a solid tonalite consisting mostly of hornblende, biotite, epidote, sodic andesine, and quartz. In essence, hydration crystallization is a way to quantify and modify the lower temperature end of Bowen’s discontinuous reaction series and apply it to natural samples. Hydration crystallization provides an alternative to crystal fractionation for explaining variations in pluton chemistry, especially the compositions of late plutonic melts. Another characteristic of hydration crystallization is that the reactions have the potential to buffer the water content of the melt during crystallization. Two closed‐system models, representing different sets of starting conditions and phases, are considered, based on least squares, mass‐balance calculations of reactions and constrained by the petrography of the rocks. Model 1 starts with an average modified Bell Island leucotonalite melt coexisting with two pyroxenes, two Fe‐Ti oxides, and plagioclase at the beginning of hydration crystallization. The starting assemblage of model 2 omits orthopyroxene and magnetite, includes amphibole, and uses a calculated melt composition. Both models generally predict, via different series of hydration crystallization reactions, the observed subsolidus mode. Model 2, however, is preferred based on petrographic observations of the Bell Island rocks, specifically the lack of magnetite and orthopyroxene, as well as certain textural features.</description><identifier>ISSN: 0022-1376</identifier><identifier>EISSN: 1537-5269</identifier><identifier>DOI: 10.1086/431911</identifier><identifier>CODEN: JGEOAZ</identifier><language>eng</language><publisher>Chicago: The University of Chicago Press</publisher><subject>Amphiboles ; Biotite ; Chemical composition ; Crystallization ; Feldspars ; Geochemistry ; Geology ; Minerals ; Modeling ; Petrology ; Plagioclase ; Plutons ; Quartz</subject><ispartof>The Journal of geology, 2005-09, Vol.113 (5), p.589-599</ispartof><rights>2005 by The University of Chicago. All rights reserved.</rights><rights>Copyright University of Chicago, acting through its Press Sep 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a422t-9a6e6d5d6ffd93c7fd5f593ffae933c8680e603f8a326d923ba81a31925eb30c3</citedby><cites>FETCH-LOGICAL-a422t-9a6e6d5d6ffd93c7fd5f593ffae933c8680e603f8a326d923ba81a31925eb30c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,803,27924,27925</link.rule.ids></links><search><creatorcontrib>Beard, James S.</creatorcontrib><creatorcontrib>Ragland, Paul C.</creatorcontrib><creatorcontrib>Crawford, Maria L.</creatorcontrib><title>Using Incongruent Equilibrium Hydration Reactions to Model Latter‐Stage Crystallization in Plutons: Examples from the Bell Island Tonalite, Alaska</title><title>The Journal of geology</title><description>Models using hydration crystallization reactions (the reverse of dehydration melting reactions such as
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{amph}\,+\mathrm{qtz}\,=\mathrm{px}\,+\mathrm{melt}\,$ \end{document}
) for the Bell Island pluton define incongruent equilibrium crystallization paths from hydrous
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{melt}\,+\mathrm{pyroxene}\,+\mathrm{Fe}\,$ \end{document}
‐Ti
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{oxides}\,+\mathrm{calcic}\,$ \end{document}
andesine (30%–50% solid) to a solid tonalite consisting mostly of hornblende, biotite, epidote, sodic andesine, and quartz. In essence, hydration crystallization is a way to quantify and modify the lower temperature end of Bowen’s discontinuous reaction series and apply it to natural samples. Hydration crystallization provides an alternative to crystal fractionation for explaining variations in pluton chemistry, especially the compositions of late plutonic melts. Another characteristic of hydration crystallization is that the reactions have the potential to buffer the water content of the melt during crystallization. Two closed‐system models, representing different sets of starting conditions and phases, are considered, based on least squares, mass‐balance calculations of reactions and constrained by the petrography of the rocks. Model 1 starts with an average modified Bell Island leucotonalite melt coexisting with two pyroxenes, two Fe‐Ti oxides, and plagioclase at the beginning of hydration crystallization. The starting assemblage of model 2 omits orthopyroxene and magnetite, includes amphibole, and uses a calculated melt composition. Both models generally predict, via different series of hydration crystallization reactions, the observed subsolidus mode. Model 2, however, is preferred based on petrographic observations of the Bell Island rocks, specifically the lack of magnetite and orthopyroxene, as well as certain textural features.</description><subject>Amphiboles</subject><subject>Biotite</subject><subject>Chemical composition</subject><subject>Crystallization</subject><subject>Feldspars</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Minerals</subject><subject>Modeling</subject><subject>Petrology</subject><subject>Plagioclase</subject><subject>Plutons</subject><subject>Quartz</subject><issn>0022-1376</issn><issn>1537-5269</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkMGO0zAURS0EEqXAHyBZCLEiYPs1TsxuqDpMpSIQzKyj1-S54-LGHduRKCs-gcV8IV9CRkHD6t3FuUdPl7HnUryVotbvFiCNlA_YTJZQFaXS5iGbCaFUIaHSj9mTlPZCSFClmLHbq-T6HV_3beh3caA-89XN4LzbRjcc-MWpi5hd6PlXwvYuJJ4D_xQ68nyDOVP88-v3t4w74st4Shm9dz-nhuv5Fz_ksfKer37g4egpcRvDgedr4h_Ie75OHvuOX4Yevcv0hp95TN_xKXtk0Sd69u_O2dX56nJ5UWw-f1wvzzYFLpTKhUFNuis7bW1noK1sV9rSgLVIBqCtdS1IC7A1gtKdUbDFWuK4jippC6KFOXs5eY8x3AyUcrMPQxx_SY00i4WCatTN2esJamNIKZJtjtEdMJ4aKZq7wZtp8BF8NYFDe-1a3IVjpJT-K--xFxO2TznEexkIocGICv4CsryL2w</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Beard, James S.</creator><creator>Ragland, Paul C.</creator><creator>Crawford, Maria L.</creator><general>The University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>200509</creationdate><title>Using Incongruent Equilibrium Hydration Reactions to Model Latter‐Stage Crystallization in Plutons: Examples from the Bell Island Tonalite, Alaska</title><author>Beard, James S. ; Ragland, Paul C. ; Crawford, Maria L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a422t-9a6e6d5d6ffd93c7fd5f593ffae933c8680e603f8a326d923ba81a31925eb30c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amphiboles</topic><topic>Biotite</topic><topic>Chemical composition</topic><topic>Crystallization</topic><topic>Feldspars</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Minerals</topic><topic>Modeling</topic><topic>Petrology</topic><topic>Plagioclase</topic><topic>Plutons</topic><topic>Quartz</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beard, James S.</creatorcontrib><creatorcontrib>Ragland, Paul C.</creatorcontrib><creatorcontrib>Crawford, Maria L.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>The Journal of geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beard, James S.</au><au>Ragland, Paul C.</au><au>Crawford, Maria L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Incongruent Equilibrium Hydration Reactions to Model Latter‐Stage Crystallization in Plutons: Examples from the Bell Island Tonalite, Alaska</atitle><jtitle>The Journal of geology</jtitle><date>2005-09</date><risdate>2005</risdate><volume>113</volume><issue>5</issue><spage>589</spage><epage>599</epage><pages>589-599</pages><issn>0022-1376</issn><eissn>1537-5269</eissn><coden>JGEOAZ</coden><abstract>Models using hydration crystallization reactions (the reverse of dehydration melting reactions such as
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{amph}\,+\mathrm{qtz}\,=\mathrm{px}\,+\mathrm{melt}\,$ \end{document}
) for the Bell Island pluton define incongruent equilibrium crystallization paths from hydrous
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{melt}\,+\mathrm{pyroxene}\,+\mathrm{Fe}\,$ \end{document}
‐Ti
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $\mathrm{oxides}\,+\mathrm{calcic}\,$ \end{document}
andesine (30%–50% solid) to a solid tonalite consisting mostly of hornblende, biotite, epidote, sodic andesine, and quartz. In essence, hydration crystallization is a way to quantify and modify the lower temperature end of Bowen’s discontinuous reaction series and apply it to natural samples. Hydration crystallization provides an alternative to crystal fractionation for explaining variations in pluton chemistry, especially the compositions of late plutonic melts. Another characteristic of hydration crystallization is that the reactions have the potential to buffer the water content of the melt during crystallization. Two closed‐system models, representing different sets of starting conditions and phases, are considered, based on least squares, mass‐balance calculations of reactions and constrained by the petrography of the rocks. Model 1 starts with an average modified Bell Island leucotonalite melt coexisting with two pyroxenes, two Fe‐Ti oxides, and plagioclase at the beginning of hydration crystallization. The starting assemblage of model 2 omits orthopyroxene and magnetite, includes amphibole, and uses a calculated melt composition. Both models generally predict, via different series of hydration crystallization reactions, the observed subsolidus mode. Model 2, however, is preferred based on petrographic observations of the Bell Island rocks, specifically the lack of magnetite and orthopyroxene, as well as certain textural features.</abstract><cop>Chicago</cop><pub>The University of Chicago Press</pub><doi>10.1086/431911</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1376 |
ispartof | The Journal of geology, 2005-09, Vol.113 (5), p.589-599 |
issn | 0022-1376 1537-5269 |
language | eng |
recordid | cdi_crossref_primary_10_1086_431911 |
source | Jstor Complete Legacy |
subjects | Amphiboles Biotite Chemical composition Crystallization Feldspars Geochemistry Geology Minerals Modeling Petrology Plagioclase Plutons Quartz |
title | Using Incongruent Equilibrium Hydration Reactions to Model Latter‐Stage Crystallization in Plutons: Examples from the Bell Island Tonalite, Alaska |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Incongruent%20Equilibrium%20Hydration%20Reactions%20to%20Model%20Latter%E2%80%90Stage%20Crystallization%20in%20Plutons:%20Examples%20from%20the%20Bell%20Island%20Tonalite,%20Alaska&rft.jtitle=The%20Journal%20of%20geology&rft.au=Beard,%20James%C2%A0S.&rft.date=2005-09&rft.volume=113&rft.issue=5&rft.spage=589&rft.epage=599&rft.pages=589-599&rft.issn=0022-1376&rft.eissn=1537-5269&rft.coden=JGEOAZ&rft_id=info:doi/10.1086/431911&rft_dat=%3Cjstor_cross%3E10.1086/431911%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194423759&rft_id=info:pmid/&rft_jstor_id=10.1086/431911&rfr_iscdi=true |