The influence of the Coriolis force on flux tubes rising through the solar convection zone

In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophys. J.; (United States) 1987-05, Vol.316 (2), p.788-800
Hauptverfasser: ARNAB RAI CHOUDHURI, GILMAN, P. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 800
container_issue 2
container_start_page 788
container_title Astrophys. J.; (United States)
container_volume 316
creator ARNAB RAI CHOUDHURI
GILMAN, P. A
description In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references.
doi_str_mv 10.1086/165243
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1086_165243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8358492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-8cc71b672d0cb7ed1c260878922ffb0060fdb4ace742f656feec430eba0fbcd93</originalsourceid><addsrcrecordid>eNo90NtKxDAQBuAgCq6nZwgi3lVzatJeyuIJFrxZQbwpyTTZjdRkSbqiPr1ZK14N8_MxDD9CZ5RcUdLIayprJvgemtGaN5XgtdpHM0KIqCRXL4foKOe33cradoZel2uLfXDD1gawODo8lmAek4-Dz9jFtEsDLuATj1tjM04--7AqLsXtav3rcxx0whDDh4XRF_4dgz1BB04P2Z7-zWP0fHe7nD9Ui6f7x_nNogKm6rFqABQ1UrGegFG2p8AkaVTTMuacIUQS1xuhwSrBnKylsxYEJ9Zo4gz0LT9G59PdmEffZfCjhXX5JZRfOskoYYIWdDkhSDHnZF23Sf5dp6-Okm5XWzfVVuDFBDc6gx5c0gF8_tcNrxvRMv4DCsVssQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The influence of the Coriolis force on flux tubes rising through the solar convection zone</title><source>Alma/SFX Local Collection</source><creator>ARNAB RAI CHOUDHURI ; GILMAN, P. A</creator><creatorcontrib>ARNAB RAI CHOUDHURI ; GILMAN, P. A ; High Altitude Observatory, Boulder, CO</creatorcontrib><description>In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/165243</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: University of Chicago Press</publisher><subject>640104 - Astrophysics &amp; Cosmology- Solar Phenomena ; Astronomy ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVECTION ; CORIOLIS FORCE ; Diameter, figure, rotation, mass ; DIFFERENTIAL EQUATIONS ; DRAG ; Earth, ocean, space ; ENERGY TRANSFER ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FLUID MECHANICS ; HEAT TRANSFER ; HYDRODYNAMICS ; MAGNETIC FIELDS ; MAGNETIC FLUX ; MAGNETOHYDRODYNAMICS ; MAIN SEQUENCE STARS ; MASS TRANSFER ; MECHANICS ; MOTION ; PARTIAL DIFFERENTIAL EQUATIONS ; ROTATION ; Solar physics ; Solar system ; STARS ; SUN</subject><ispartof>Astrophys. J.; (United States), 1987-05, Vol.316 (2), p.788-800</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-8cc71b672d0cb7ed1c260878922ffb0060fdb4ace742f656feec430eba0fbcd93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8358492$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6210241$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ARNAB RAI CHOUDHURI</creatorcontrib><creatorcontrib>GILMAN, P. A</creatorcontrib><creatorcontrib>High Altitude Observatory, Boulder, CO</creatorcontrib><title>The influence of the Coriolis force on flux tubes rising through the solar convection zone</title><title>Astrophys. J.; (United States)</title><description>In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references.</description><subject>640104 - Astrophysics &amp; Cosmology- Solar Phenomena</subject><subject>Astronomy</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVECTION</subject><subject>CORIOLIS FORCE</subject><subject>Diameter, figure, rotation, mass</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DRAG</subject><subject>Earth, ocean, space</subject><subject>ENERGY TRANSFER</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FLUID MECHANICS</subject><subject>HEAT TRANSFER</subject><subject>HYDRODYNAMICS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC FLUX</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MAIN SEQUENCE STARS</subject><subject>MASS TRANSFER</subject><subject>MECHANICS</subject><subject>MOTION</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>ROTATION</subject><subject>Solar physics</subject><subject>Solar system</subject><subject>STARS</subject><subject>SUN</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo90NtKxDAQBuAgCq6nZwgi3lVzatJeyuIJFrxZQbwpyTTZjdRkSbqiPr1ZK14N8_MxDD9CZ5RcUdLIayprJvgemtGaN5XgtdpHM0KIqCRXL4foKOe33cradoZel2uLfXDD1gawODo8lmAek4-Dz9jFtEsDLuATj1tjM04--7AqLsXtav3rcxx0whDDh4XRF_4dgz1BB04P2Z7-zWP0fHe7nD9Ui6f7x_nNogKm6rFqABQ1UrGegFG2p8AkaVTTMuacIUQS1xuhwSrBnKylsxYEJ9Zo4gz0LT9G59PdmEffZfCjhXX5JZRfOskoYYIWdDkhSDHnZF23Sf5dp6-Okm5XWzfVVuDFBDc6gx5c0gF8_tcNrxvRMv4DCsVssQ</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>ARNAB RAI CHOUDHURI</creator><creator>GILMAN, P. A</creator><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870501</creationdate><title>The influence of the Coriolis force on flux tubes rising through the solar convection zone</title><author>ARNAB RAI CHOUDHURI ; GILMAN, P. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-8cc71b672d0cb7ed1c260878922ffb0060fdb4ace742f656feec430eba0fbcd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>640104 - Astrophysics &amp; Cosmology- Solar Phenomena</topic><topic>Astronomy</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVECTION</topic><topic>CORIOLIS FORCE</topic><topic>Diameter, figure, rotation, mass</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DRAG</topic><topic>Earth, ocean, space</topic><topic>ENERGY TRANSFER</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FLUID MECHANICS</topic><topic>HEAT TRANSFER</topic><topic>HYDRODYNAMICS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC FLUX</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MAIN SEQUENCE STARS</topic><topic>MASS TRANSFER</topic><topic>MECHANICS</topic><topic>MOTION</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>ROTATION</topic><topic>Solar physics</topic><topic>Solar system</topic><topic>STARS</topic><topic>SUN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARNAB RAI CHOUDHURI</creatorcontrib><creatorcontrib>GILMAN, P. A</creatorcontrib><creatorcontrib>High Altitude Observatory, Boulder, CO</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Astrophys. J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARNAB RAI CHOUDHURI</au><au>GILMAN, P. A</au><aucorp>High Altitude Observatory, Boulder, CO</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of the Coriolis force on flux tubes rising through the solar convection zone</atitle><jtitle>Astrophys. J.; (United States)</jtitle><date>1987-05-01</date><risdate>1987</risdate><volume>316</volume><issue>2</issue><spage>788</spage><epage>800</epage><pages>788-800</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references.</abstract><cop>Chicago, IL</cop><pub>University of Chicago Press</pub><doi>10.1086/165243</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof Astrophys. J.; (United States), 1987-05, Vol.316 (2), p.788-800
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_1086_165243
source Alma/SFX Local Collection
subjects 640104 - Astrophysics & Cosmology- Solar Phenomena
Astronomy
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONVECTION
CORIOLIS FORCE
Diameter, figure, rotation, mass
DIFFERENTIAL EQUATIONS
DRAG
Earth, ocean, space
ENERGY TRANSFER
EQUATIONS
EQUATIONS OF MOTION
Exact sciences and technology
FLUID MECHANICS
HEAT TRANSFER
HYDRODYNAMICS
MAGNETIC FIELDS
MAGNETIC FLUX
MAGNETOHYDRODYNAMICS
MAIN SEQUENCE STARS
MASS TRANSFER
MECHANICS
MOTION
PARTIAL DIFFERENTIAL EQUATIONS
ROTATION
Solar physics
Solar system
STARS
SUN
title The influence of the Coriolis force on flux tubes rising through the solar convection zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20the%20Coriolis%20force%20on%20flux%20tubes%20rising%20through%20the%20solar%20convection%20zone&rft.jtitle=Astrophys.%20J.;%20(United%20States)&rft.au=ARNAB%20RAI%20CHOUDHURI&rft.aucorp=High%20Altitude%20Observatory,%20Boulder,%20CO&rft.date=1987-05-01&rft.volume=316&rft.issue=2&rft.spage=788&rft.epage=800&rft.pages=788-800&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/165243&rft_dat=%3Cpascalfrancis_osti_%3E8358492%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true