The influence of the Coriolis force on flux tubes rising through the solar convection zone
In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If...
Gespeichert in:
Veröffentlicht in: | Astrophys. J.; (United States) 1987-05, Vol.316 (2), p.788-800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 800 |
---|---|
container_issue | 2 |
container_start_page | 788 |
container_title | Astrophys. J.; (United States) |
container_volume | 316 |
creator | ARNAB RAI CHOUDHURI GILMAN, P. A |
description | In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references. |
doi_str_mv | 10.1086/165243 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1086_165243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8358492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-8cc71b672d0cb7ed1c260878922ffb0060fdb4ace742f656feec430eba0fbcd93</originalsourceid><addsrcrecordid>eNo90NtKxDAQBuAgCq6nZwgi3lVzatJeyuIJFrxZQbwpyTTZjdRkSbqiPr1ZK14N8_MxDD9CZ5RcUdLIayprJvgemtGaN5XgtdpHM0KIqCRXL4foKOe33cradoZel2uLfXDD1gawODo8lmAek4-Dz9jFtEsDLuATj1tjM04--7AqLsXtav3rcxx0whDDh4XRF_4dgz1BB04P2Z7-zWP0fHe7nD9Ui6f7x_nNogKm6rFqABQ1UrGegFG2p8AkaVTTMuacIUQS1xuhwSrBnKylsxYEJ9Zo4gz0LT9G59PdmEffZfCjhXX5JZRfOskoYYIWdDkhSDHnZF23Sf5dp6-Okm5XWzfVVuDFBDc6gx5c0gF8_tcNrxvRMv4DCsVssQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The influence of the Coriolis force on flux tubes rising through the solar convection zone</title><source>Alma/SFX Local Collection</source><creator>ARNAB RAI CHOUDHURI ; GILMAN, P. A</creator><creatorcontrib>ARNAB RAI CHOUDHURI ; GILMAN, P. A ; High Altitude Observatory, Boulder, CO</creatorcontrib><description>In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/165243</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: University of Chicago Press</publisher><subject>640104 - Astrophysics & Cosmology- Solar Phenomena ; Astronomy ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVECTION ; CORIOLIS FORCE ; Diameter, figure, rotation, mass ; DIFFERENTIAL EQUATIONS ; DRAG ; Earth, ocean, space ; ENERGY TRANSFER ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FLUID MECHANICS ; HEAT TRANSFER ; HYDRODYNAMICS ; MAGNETIC FIELDS ; MAGNETIC FLUX ; MAGNETOHYDRODYNAMICS ; MAIN SEQUENCE STARS ; MASS TRANSFER ; MECHANICS ; MOTION ; PARTIAL DIFFERENTIAL EQUATIONS ; ROTATION ; Solar physics ; Solar system ; STARS ; SUN</subject><ispartof>Astrophys. J.; (United States), 1987-05, Vol.316 (2), p.788-800</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-8cc71b672d0cb7ed1c260878922ffb0060fdb4ace742f656feec430eba0fbcd93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8358492$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6210241$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>ARNAB RAI CHOUDHURI</creatorcontrib><creatorcontrib>GILMAN, P. A</creatorcontrib><creatorcontrib>High Altitude Observatory, Boulder, CO</creatorcontrib><title>The influence of the Coriolis force on flux tubes rising through the solar convection zone</title><title>Astrophys. J.; (United States)</title><description>In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references.</description><subject>640104 - Astrophysics & Cosmology- Solar Phenomena</subject><subject>Astronomy</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVECTION</subject><subject>CORIOLIS FORCE</subject><subject>Diameter, figure, rotation, mass</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DRAG</subject><subject>Earth, ocean, space</subject><subject>ENERGY TRANSFER</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FLUID MECHANICS</subject><subject>HEAT TRANSFER</subject><subject>HYDRODYNAMICS</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC FLUX</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MAIN SEQUENCE STARS</subject><subject>MASS TRANSFER</subject><subject>MECHANICS</subject><subject>MOTION</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>ROTATION</subject><subject>Solar physics</subject><subject>Solar system</subject><subject>STARS</subject><subject>SUN</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNo90NtKxDAQBuAgCq6nZwgi3lVzatJeyuIJFrxZQbwpyTTZjdRkSbqiPr1ZK14N8_MxDD9CZ5RcUdLIayprJvgemtGaN5XgtdpHM0KIqCRXL4foKOe33cradoZel2uLfXDD1gawODo8lmAek4-Dz9jFtEsDLuATj1tjM04--7AqLsXtav3rcxx0whDDh4XRF_4dgz1BB04P2Z7-zWP0fHe7nD9Ui6f7x_nNogKm6rFqABQ1UrGegFG2p8AkaVTTMuacIUQS1xuhwSrBnKylsxYEJ9Zo4gz0LT9G59PdmEffZfCjhXX5JZRfOskoYYIWdDkhSDHnZF23Sf5dp6-Okm5XWzfVVuDFBDc6gx5c0gF8_tcNrxvRMv4DCsVssQ</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>ARNAB RAI CHOUDHURI</creator><creator>GILMAN, P. A</creator><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19870501</creationdate><title>The influence of the Coriolis force on flux tubes rising through the solar convection zone</title><author>ARNAB RAI CHOUDHURI ; GILMAN, P. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-8cc71b672d0cb7ed1c260878922ffb0060fdb4ace742f656feec430eba0fbcd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>640104 - Astrophysics & Cosmology- Solar Phenomena</topic><topic>Astronomy</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVECTION</topic><topic>CORIOLIS FORCE</topic><topic>Diameter, figure, rotation, mass</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DRAG</topic><topic>Earth, ocean, space</topic><topic>ENERGY TRANSFER</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FLUID MECHANICS</topic><topic>HEAT TRANSFER</topic><topic>HYDRODYNAMICS</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC FLUX</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MAIN SEQUENCE STARS</topic><topic>MASS TRANSFER</topic><topic>MECHANICS</topic><topic>MOTION</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>ROTATION</topic><topic>Solar physics</topic><topic>Solar system</topic><topic>STARS</topic><topic>SUN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ARNAB RAI CHOUDHURI</creatorcontrib><creatorcontrib>GILMAN, P. A</creatorcontrib><creatorcontrib>High Altitude Observatory, Boulder, CO</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Astrophys. J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ARNAB RAI CHOUDHURI</au><au>GILMAN, P. A</au><aucorp>High Altitude Observatory, Boulder, CO</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of the Coriolis force on flux tubes rising through the solar convection zone</atitle><jtitle>Astrophys. J.; (United States)</jtitle><date>1987-05-01</date><risdate>1987</risdate><volume>316</volume><issue>2</issue><spage>788</spage><epage>800</epage><pages>788-800</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones. 40 references.</abstract><cop>Chicago, IL</cop><pub>University of Chicago Press</pub><doi>10.1086/165243</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | Astrophys. J.; (United States), 1987-05, Vol.316 (2), p.788-800 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_1086_165243 |
source | Alma/SFX Local Collection |
subjects | 640104 - Astrophysics & Cosmology- Solar Phenomena Astronomy CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONVECTION CORIOLIS FORCE Diameter, figure, rotation, mass DIFFERENTIAL EQUATIONS DRAG Earth, ocean, space ENERGY TRANSFER EQUATIONS EQUATIONS OF MOTION Exact sciences and technology FLUID MECHANICS HEAT TRANSFER HYDRODYNAMICS MAGNETIC FIELDS MAGNETIC FLUX MAGNETOHYDRODYNAMICS MAIN SEQUENCE STARS MASS TRANSFER MECHANICS MOTION PARTIAL DIFFERENTIAL EQUATIONS ROTATION Solar physics Solar system STARS SUN |
title | The influence of the Coriolis force on flux tubes rising through the solar convection zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20the%20Coriolis%20force%20on%20flux%20tubes%20rising%20through%20the%20solar%20convection%20zone&rft.jtitle=Astrophys.%20J.;%20(United%20States)&rft.au=ARNAB%20RAI%20CHOUDHURI&rft.aucorp=High%20Altitude%20Observatory,%20Boulder,%20CO&rft.date=1987-05-01&rft.volume=316&rft.issue=2&rft.spage=788&rft.epage=800&rft.pages=788-800&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/165243&rft_dat=%3Cpascalfrancis_osti_%3E8358492%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |