Physical conditions in granulation

We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar< or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophys. J.; (United States) 1976-01, Vol.203, p.533
Hauptverfasser: Altrock, R. C., Musman, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 533
container_title Astrophys. J.; (United States)
container_volume 203
creator Altrock, R. C.
Musman, S.
description We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar< or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP)
doi_str_mv 10.1086/154109
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1086_154109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1086_154109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-e46f4f7f4c16c9d5c45a46ba0534ccf6b25d81895ea2a514a82f42bd60ebe69d3</originalsourceid><addsrcrecordid>eNotj8FKxDAURYMoWEf9hjILd9W85CVtljLoKAzoQsFdSF8TJ1JTaepi_t4pdXU5cLncw9g18Fvgjb4DhcDNCStAyaZCqepTVnDOsdKy_jhnFzl_zSiMKdj6dX_IkVxf0pC6OMUh5TKm8nN06bd3M1-ys-D67K_-c8XeHx_eNk_V7mX7vLnfVSRATJVHHTDUAQk0mU4RKoe6dVxJJAq6FaproDHKO-EUoGtEQNF2mvvWa9PJFVsvu0Oeos0UJ0_746vkabK11Ao4Hks3S4nGIefRB_szxm83HixwO-vbRV_-AX2HSxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physical conditions in granulation</title><source>Alma/SFX Local Collection</source><creator>Altrock, R. C. ; Musman, S.</creator><creatorcontrib>Altrock, R. C. ; Musman, S. ; Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</creatorcontrib><description>We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar&lt; or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP)</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/154109</identifier><language>eng</language><publisher>United States</publisher><subject>640104 - Astrophysics &amp; Cosmology- Solar Phenomena ; ATMOSPHERES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVECTION ; ELEMENTS ; ENERGY TRANSFER ; EQUILIBRIUM ; HEAT TRANSFER ; IRON ; METALS ; PHOTOSPHERE ; RESOLUTION ; SOLAR ACTIVITY ; SOLAR ATMOSPHERE ; SOLAR GRANULATION ; TITANIUM ; TRANSITION ELEMENTS ; TURBULENCE</subject><ispartof>Astrophys. J.; (United States), 1976-01, Vol.203, p.533</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c212t-e46f4f7f4c16c9d5c45a46ba0534ccf6b25d81895ea2a514a82f42bd60ebe69d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7365104$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Altrock, R. C.</creatorcontrib><creatorcontrib>Musman, S.</creatorcontrib><creatorcontrib>Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</creatorcontrib><title>Physical conditions in granulation</title><title>Astrophys. J.; (United States)</title><description>We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar&lt; or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP)</description><subject>640104 - Astrophysics &amp; Cosmology- Solar Phenomena</subject><subject>ATMOSPHERES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVECTION</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>EQUILIBRIUM</subject><subject>HEAT TRANSFER</subject><subject>IRON</subject><subject>METALS</subject><subject>PHOTOSPHERE</subject><subject>RESOLUTION</subject><subject>SOLAR ACTIVITY</subject><subject>SOLAR ATMOSPHERE</subject><subject>SOLAR GRANULATION</subject><subject>TITANIUM</subject><subject>TRANSITION ELEMENTS</subject><subject>TURBULENCE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNotj8FKxDAURYMoWEf9hjILd9W85CVtljLoKAzoQsFdSF8TJ1JTaepi_t4pdXU5cLncw9g18Fvgjb4DhcDNCStAyaZCqepTVnDOsdKy_jhnFzl_zSiMKdj6dX_IkVxf0pC6OMUh5TKm8nN06bd3M1-ys-D67K_-c8XeHx_eNk_V7mX7vLnfVSRATJVHHTDUAQk0mU4RKoe6dVxJJAq6FaproDHKO-EUoGtEQNF2mvvWa9PJFVsvu0Oeos0UJ0_746vkabK11Ao4Hks3S4nGIefRB_szxm83HixwO-vbRV_-AX2HSxY</recordid><startdate>19760101</startdate><enddate>19760101</enddate><creator>Altrock, R. C.</creator><creator>Musman, S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19760101</creationdate><title>Physical conditions in granulation</title><author>Altrock, R. C. ; Musman, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-e46f4f7f4c16c9d5c45a46ba0534ccf6b25d81895ea2a514a82f42bd60ebe69d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>640104 - Astrophysics &amp; Cosmology- Solar Phenomena</topic><topic>ATMOSPHERES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVECTION</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>EQUILIBRIUM</topic><topic>HEAT TRANSFER</topic><topic>IRON</topic><topic>METALS</topic><topic>PHOTOSPHERE</topic><topic>RESOLUTION</topic><topic>SOLAR ACTIVITY</topic><topic>SOLAR ATMOSPHERE</topic><topic>SOLAR GRANULATION</topic><topic>TITANIUM</topic><topic>TRANSITION ELEMENTS</topic><topic>TURBULENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altrock, R. C.</creatorcontrib><creatorcontrib>Musman, S.</creatorcontrib><creatorcontrib>Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Astrophys. J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altrock, R. C.</au><au>Musman, S.</au><aucorp>Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical conditions in granulation</atitle><jtitle>Astrophys. J.; (United States)</jtitle><date>1976-01-01</date><risdate>1976</risdate><volume>203</volume><spage>533</spage><pages>533-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar&lt; or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP)</abstract><cop>United States</cop><doi>10.1086/154109</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof Astrophys. J.; (United States), 1976-01, Vol.203, p.533
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_1086_154109
source Alma/SFX Local Collection
subjects 640104 - Astrophysics & Cosmology- Solar Phenomena
ATMOSPHERES
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
CONVECTION
ELEMENTS
ENERGY TRANSFER
EQUILIBRIUM
HEAT TRANSFER
IRON
METALS
PHOTOSPHERE
RESOLUTION
SOLAR ACTIVITY
SOLAR ATMOSPHERE
SOLAR GRANULATION
TITANIUM
TRANSITION ELEMENTS
TURBULENCE
title Physical conditions in granulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20conditions%20in%20granulation&rft.jtitle=Astrophys.%20J.;%20(United%20States)&rft.au=Altrock,%20R.%20C.&rft.aucorp=Sacramento%20Peak%20Observatory,%20Air%20Force%20Cambridge%20Research%20Laboratories&rft.date=1976-01-01&rft.volume=203&rft.spage=533&rft.pages=533-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1086/154109&rft_dat=%3Ccrossref_osti_%3E10_1086_154109%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true