Physical conditions in granulation
We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar< or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutio...
Gespeichert in:
Veröffentlicht in: | Astrophys. J.; (United States) 1976-01, Vol.203, p.533 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 533 |
container_title | Astrophys. J.; (United States) |
container_volume | 203 |
creator | Altrock, R. C. Musman, S. |
description | We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar< or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP) |
doi_str_mv | 10.1086/154109 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1086_154109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1086_154109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-e46f4f7f4c16c9d5c45a46ba0534ccf6b25d81895ea2a514a82f42bd60ebe69d3</originalsourceid><addsrcrecordid>eNotj8FKxDAURYMoWEf9hjILd9W85CVtljLoKAzoQsFdSF8TJ1JTaepi_t4pdXU5cLncw9g18Fvgjb4DhcDNCStAyaZCqepTVnDOsdKy_jhnFzl_zSiMKdj6dX_IkVxf0pC6OMUh5TKm8nN06bd3M1-ys-D67K_-c8XeHx_eNk_V7mX7vLnfVSRATJVHHTDUAQk0mU4RKoe6dVxJJAq6FaproDHKO-EUoGtEQNF2mvvWa9PJFVsvu0Oeos0UJ0_746vkabK11Ao4Hks3S4nGIefRB_szxm83HixwO-vbRV_-AX2HSxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physical conditions in granulation</title><source>Alma/SFX Local Collection</source><creator>Altrock, R. C. ; Musman, S.</creator><creatorcontrib>Altrock, R. C. ; Musman, S. ; Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</creatorcontrib><description>We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar< or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP)</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/154109</identifier><language>eng</language><publisher>United States</publisher><subject>640104 - Astrophysics & Cosmology- Solar Phenomena ; ATMOSPHERES ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONVECTION ; ELEMENTS ; ENERGY TRANSFER ; EQUILIBRIUM ; HEAT TRANSFER ; IRON ; METALS ; PHOTOSPHERE ; RESOLUTION ; SOLAR ACTIVITY ; SOLAR ATMOSPHERE ; SOLAR GRANULATION ; TITANIUM ; TRANSITION ELEMENTS ; TURBULENCE</subject><ispartof>Astrophys. J.; (United States), 1976-01, Vol.203, p.533</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c212t-e46f4f7f4c16c9d5c45a46ba0534ccf6b25d81895ea2a514a82f42bd60ebe69d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/7365104$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Altrock, R. C.</creatorcontrib><creatorcontrib>Musman, S.</creatorcontrib><creatorcontrib>Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</creatorcontrib><title>Physical conditions in granulation</title><title>Astrophys. J.; (United States)</title><description>We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar< or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP)</description><subject>640104 - Astrophysics & Cosmology- Solar Phenomena</subject><subject>ATMOSPHERES</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONVECTION</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>EQUILIBRIUM</subject><subject>HEAT TRANSFER</subject><subject>IRON</subject><subject>METALS</subject><subject>PHOTOSPHERE</subject><subject>RESOLUTION</subject><subject>SOLAR ACTIVITY</subject><subject>SOLAR ATMOSPHERE</subject><subject>SOLAR GRANULATION</subject><subject>TITANIUM</subject><subject>TRANSITION ELEMENTS</subject><subject>TURBULENCE</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNotj8FKxDAURYMoWEf9hjILd9W85CVtljLoKAzoQsFdSF8TJ1JTaepi_t4pdXU5cLncw9g18Fvgjb4DhcDNCStAyaZCqepTVnDOsdKy_jhnFzl_zSiMKdj6dX_IkVxf0pC6OMUh5TKm8nN06bd3M1-ys-D67K_-c8XeHx_eNk_V7mX7vLnfVSRATJVHHTDUAQk0mU4RKoe6dVxJJAq6FaproDHKO-EUoGtEQNF2mvvWa9PJFVsvu0Oeos0UJ0_746vkabK11Ao4Hks3S4nGIefRB_szxm83HixwO-vbRV_-AX2HSxY</recordid><startdate>19760101</startdate><enddate>19760101</enddate><creator>Altrock, R. C.</creator><creator>Musman, S.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19760101</creationdate><title>Physical conditions in granulation</title><author>Altrock, R. C. ; Musman, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-e46f4f7f4c16c9d5c45a46ba0534ccf6b25d81895ea2a514a82f42bd60ebe69d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>640104 - Astrophysics & Cosmology- Solar Phenomena</topic><topic>ATMOSPHERES</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONVECTION</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>EQUILIBRIUM</topic><topic>HEAT TRANSFER</topic><topic>IRON</topic><topic>METALS</topic><topic>PHOTOSPHERE</topic><topic>RESOLUTION</topic><topic>SOLAR ACTIVITY</topic><topic>SOLAR ATMOSPHERE</topic><topic>SOLAR GRANULATION</topic><topic>TITANIUM</topic><topic>TRANSITION ELEMENTS</topic><topic>TURBULENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altrock, R. C.</creatorcontrib><creatorcontrib>Musman, S.</creatorcontrib><creatorcontrib>Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Astrophys. J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altrock, R. C.</au><au>Musman, S.</au><aucorp>Sacramento Peak Observatory, Air Force Cambridge Research Laboratories</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical conditions in granulation</atitle><jtitle>Astrophys. J.; (United States)</jtitle><date>1976-01-01</date><risdate>1976</risdate><volume>203</volume><spage>533</spage><pages>533-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We find that vertical-bar..delta..Tvertical-bar increases going downward in the low photosphere. In the middle photosphere vertical-bar..delta..Tvertical-bar< or =70 K. The solutions fo ..delta..T are given in Table 2 and Figure 1. We also find that the large buoyant forces implied by the solutions for ..delta..T are inconsistent with the small observed accelerations in the granular flow. We conclude that this incompatibility provides additional evidence besides line broadening for the existence of microturbulence in the low photosphere. The convective flux at tau/sub 5000/=3 is small compared with the total flux. Also, the temperature fluctuations are much larger than those that would be produced by the observed convective velocities alone. Thus the observable low photosphere appears to be near radiative equilibrium. (AIP)</abstract><cop>United States</cop><doi>10.1086/154109</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | Astrophys. J.; (United States), 1976-01, Vol.203, p.533 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_1086_154109 |
source | Alma/SFX Local Collection |
subjects | 640104 - Astrophysics & Cosmology- Solar Phenomena ATMOSPHERES CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONVECTION ELEMENTS ENERGY TRANSFER EQUILIBRIUM HEAT TRANSFER IRON METALS PHOTOSPHERE RESOLUTION SOLAR ACTIVITY SOLAR ATMOSPHERE SOLAR GRANULATION TITANIUM TRANSITION ELEMENTS TURBULENCE |
title | Physical conditions in granulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20conditions%20in%20granulation&rft.jtitle=Astrophys.%20J.;%20(United%20States)&rft.au=Altrock,%20R.%20C.&rft.aucorp=Sacramento%20Peak%20Observatory,%20Air%20Force%20Cambridge%20Research%20Laboratories&rft.date=1976-01-01&rft.volume=203&rft.spage=533&rft.pages=533-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1086/154109&rft_dat=%3Ccrossref_osti_%3E10_1086_154109%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |