CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS
Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning...
Gespeichert in:
Veröffentlicht in: | Journal of biopharmaceutical statistics 2000-02, Vol.10 (1), p.109-129 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Journal of biopharmaceutical statistics |
container_volume | 10 |
creator | Patefield, Mike |
description | Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration. |
doi_str_mv | 10.1081/BIP-100101017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1081_BIP_100101017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70960718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4Mobk6PXqUnb3V5TbOkx9pVLZRW1ireQn8kUOnWmWzI_nszOsSDvMN7PD58-fJB6BbwA2AO88fk1QWM4TjsDE2BetilDODc3pj6LvHxYoKujPm0FGXcv0QTwAwHHNMpmkd5tkzKJM_C1AmzpRN_hFHplHFRFk6SOdEqL4r8PV455SoJ0-IaXaiqN_LmtGfo7Skuoxc3zZ-TKEzdxqNk58qWSfBqyRumGONeXQfcV63XVranfZGGEU95TMrA9wMKira45j6BAIAAlWSG7sfcrR6-9tLsxLozjez7aiOHvRG2_wIz4BZ0R7DRgzFaKrHV3brSBwFYHA0Ja0j8GrL83Sl4X69l-4celViAj0C3UYNeV9-D7luxqw79oJWuNk1nBPk_-wcDAWyn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70960718</pqid></control><display><type>article</type><title>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><source>Access via Taylor & Francis</source><creator>Patefield, Mike</creator><creatorcontrib>Patefield, Mike</creatorcontrib><description>Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration.</description><identifier>ISSN: 1054-3406</identifier><identifier>EISSN: 1520-5711</identifier><identifier>DOI: 10.1081/BIP-100101017</identifier><identifier>PMID: 10709805</identifier><language>eng</language><publisher>England: Taylor & Francis Group</publisher><subject>Binomial Distribution ; Conditional inference ; Cross-Over Studies ; Crossover trials ; Double-Blind Method ; Exact tests ; Humans ; Hybrid sampling ; Importance sampling ; Likelihood Functions ; Multivariate Analysis ; Poisson Distribution ; Randomized Controlled Trials as Topic - methods ; Sampling Studies ; Statistics as Topic - methods</subject><ispartof>Journal of biopharmaceutical statistics, 2000-02, Vol.10 (1), p.109-129</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</citedby><cites>FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1081/BIP-100101017$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1081/BIP-100101017$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10709805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patefield, Mike</creatorcontrib><title>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</title><title>Journal of biopharmaceutical statistics</title><addtitle>J Biopharm Stat</addtitle><description>Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration.</description><subject>Binomial Distribution</subject><subject>Conditional inference</subject><subject>Cross-Over Studies</subject><subject>Crossover trials</subject><subject>Double-Blind Method</subject><subject>Exact tests</subject><subject>Humans</subject><subject>Hybrid sampling</subject><subject>Importance sampling</subject><subject>Likelihood Functions</subject><subject>Multivariate Analysis</subject><subject>Poisson Distribution</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>Sampling Studies</subject><subject>Statistics as Topic - methods</subject><issn>1054-3406</issn><issn>1520-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM9LwzAUx4Mobk6PXqUnb3V5TbOkx9pVLZRW1ireQn8kUOnWmWzI_nszOsSDvMN7PD58-fJB6BbwA2AO88fk1QWM4TjsDE2BetilDODc3pj6LvHxYoKujPm0FGXcv0QTwAwHHNMpmkd5tkzKJM_C1AmzpRN_hFHplHFRFk6SOdEqL4r8PV455SoJ0-IaXaiqN_LmtGfo7Skuoxc3zZ-TKEzdxqNk58qWSfBqyRumGONeXQfcV63XVranfZGGEU95TMrA9wMKira45j6BAIAAlWSG7sfcrR6-9tLsxLozjez7aiOHvRG2_wIz4BZ0R7DRgzFaKrHV3brSBwFYHA0Ja0j8GrL83Sl4X69l-4celViAj0C3UYNeV9-D7luxqw79oJWuNk1nBPk_-wcDAWyn</recordid><startdate>20000215</startdate><enddate>20000215</enddate><creator>Patefield, Mike</creator><general>Taylor & Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000215</creationdate><title>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</title><author>Patefield, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Binomial Distribution</topic><topic>Conditional inference</topic><topic>Cross-Over Studies</topic><topic>Crossover trials</topic><topic>Double-Blind Method</topic><topic>Exact tests</topic><topic>Humans</topic><topic>Hybrid sampling</topic><topic>Importance sampling</topic><topic>Likelihood Functions</topic><topic>Multivariate Analysis</topic><topic>Poisson Distribution</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>Sampling Studies</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patefield, Mike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biopharmaceutical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patefield, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</atitle><jtitle>Journal of biopharmaceutical statistics</jtitle><addtitle>J Biopharm Stat</addtitle><date>2000-02-15</date><risdate>2000</risdate><volume>10</volume><issue>1</issue><spage>109</spage><epage>129</epage><pages>109-129</pages><issn>1054-3406</issn><eissn>1520-5711</eissn><abstract>Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration.</abstract><cop>England</cop><pub>Taylor & Francis Group</pub><pmid>10709805</pmid><doi>10.1081/BIP-100101017</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-3406 |
ispartof | Journal of biopharmaceutical statistics, 2000-02, Vol.10 (1), p.109-129 |
issn | 1054-3406 1520-5711 |
language | eng |
recordid | cdi_crossref_primary_10_1081_BIP_100101017 |
source | MEDLINE; EBSCOhost Business Source Complete; Access via Taylor & Francis |
subjects | Binomial Distribution Conditional inference Cross-Over Studies Crossover trials Double-Blind Method Exact tests Humans Hybrid sampling Importance sampling Likelihood Functions Multivariate Analysis Poisson Distribution Randomized Controlled Trials as Topic - methods Sampling Studies Statistics as Topic - methods |
title | CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONDITIONAL%20AND%20EXACT%20TESTS%20IN%20CROSSOVER%20TRIALS&rft.jtitle=Journal%20of%20biopharmaceutical%20statistics&rft.au=Patefield,%20Mike&rft.date=2000-02-15&rft.volume=10&rft.issue=1&rft.spage=109&rft.epage=129&rft.pages=109-129&rft.issn=1054-3406&rft.eissn=1520-5711&rft_id=info:doi/10.1081/BIP-100101017&rft_dat=%3Cproquest_cross%3E70960718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70960718&rft_id=info:pmid/10709805&rfr_iscdi=true |