CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS

Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biopharmaceutical statistics 2000-02, Vol.10 (1), p.109-129
1. Verfasser: Patefield, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 109
container_title Journal of biopharmaceutical statistics
container_volume 10
creator Patefield, Mike
description Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration.
doi_str_mv 10.1081/BIP-100101017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1081_BIP_100101017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70960718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4Mobk6PXqUnb3V5TbOkx9pVLZRW1ireQn8kUOnWmWzI_nszOsSDvMN7PD58-fJB6BbwA2AO88fk1QWM4TjsDE2BetilDODc3pj6LvHxYoKujPm0FGXcv0QTwAwHHNMpmkd5tkzKJM_C1AmzpRN_hFHplHFRFk6SOdEqL4r8PV455SoJ0-IaXaiqN_LmtGfo7Skuoxc3zZ-TKEzdxqNk58qWSfBqyRumGONeXQfcV63XVranfZGGEU95TMrA9wMKira45j6BAIAAlWSG7sfcrR6-9tLsxLozjez7aiOHvRG2_wIz4BZ0R7DRgzFaKrHV3brSBwFYHA0Ja0j8GrL83Sl4X69l-4celViAj0C3UYNeV9-D7luxqw79oJWuNk1nBPk_-wcDAWyn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70960718</pqid></control><display><type>article</type><title>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</title><source>MEDLINE</source><source>EBSCOhost Business Source Complete</source><source>Access via Taylor &amp; Francis</source><creator>Patefield, Mike</creator><creatorcontrib>Patefield, Mike</creatorcontrib><description>Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration.</description><identifier>ISSN: 1054-3406</identifier><identifier>EISSN: 1520-5711</identifier><identifier>DOI: 10.1081/BIP-100101017</identifier><identifier>PMID: 10709805</identifier><language>eng</language><publisher>England: Taylor &amp; Francis Group</publisher><subject>Binomial Distribution ; Conditional inference ; Cross-Over Studies ; Crossover trials ; Double-Blind Method ; Exact tests ; Humans ; Hybrid sampling ; Importance sampling ; Likelihood Functions ; Multivariate Analysis ; Poisson Distribution ; Randomized Controlled Trials as Topic - methods ; Sampling Studies ; Statistics as Topic - methods</subject><ispartof>Journal of biopharmaceutical statistics, 2000-02, Vol.10 (1), p.109-129</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</citedby><cites>FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1081/BIP-100101017$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1081/BIP-100101017$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10709805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patefield, Mike</creatorcontrib><title>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</title><title>Journal of biopharmaceutical statistics</title><addtitle>J Biopharm Stat</addtitle><description>Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration.</description><subject>Binomial Distribution</subject><subject>Conditional inference</subject><subject>Cross-Over Studies</subject><subject>Crossover trials</subject><subject>Double-Blind Method</subject><subject>Exact tests</subject><subject>Humans</subject><subject>Hybrid sampling</subject><subject>Importance sampling</subject><subject>Likelihood Functions</subject><subject>Multivariate Analysis</subject><subject>Poisson Distribution</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>Sampling Studies</subject><subject>Statistics as Topic - methods</subject><issn>1054-3406</issn><issn>1520-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM9LwzAUx4Mobk6PXqUnb3V5TbOkx9pVLZRW1ireQn8kUOnWmWzI_nszOsSDvMN7PD58-fJB6BbwA2AO88fk1QWM4TjsDE2BetilDODc3pj6LvHxYoKujPm0FGXcv0QTwAwHHNMpmkd5tkzKJM_C1AmzpRN_hFHplHFRFk6SOdEqL4r8PV455SoJ0-IaXaiqN_LmtGfo7Skuoxc3zZ-TKEzdxqNk58qWSfBqyRumGONeXQfcV63XVranfZGGEU95TMrA9wMKira45j6BAIAAlWSG7sfcrR6-9tLsxLozjez7aiOHvRG2_wIz4BZ0R7DRgzFaKrHV3brSBwFYHA0Ja0j8GrL83Sl4X69l-4celViAj0C3UYNeV9-D7luxqw79oJWuNk1nBPk_-wcDAWyn</recordid><startdate>20000215</startdate><enddate>20000215</enddate><creator>Patefield, Mike</creator><general>Taylor &amp; Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000215</creationdate><title>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</title><author>Patefield, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-ed7e12be8c7f7782bb984fd2da0107f73c732f27ee944951f5d0b8431911315e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Binomial Distribution</topic><topic>Conditional inference</topic><topic>Cross-Over Studies</topic><topic>Crossover trials</topic><topic>Double-Blind Method</topic><topic>Exact tests</topic><topic>Humans</topic><topic>Hybrid sampling</topic><topic>Importance sampling</topic><topic>Likelihood Functions</topic><topic>Multivariate Analysis</topic><topic>Poisson Distribution</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>Sampling Studies</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patefield, Mike</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biopharmaceutical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patefield, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS</atitle><jtitle>Journal of biopharmaceutical statistics</jtitle><addtitle>J Biopharm Stat</addtitle><date>2000-02-15</date><risdate>2000</risdate><volume>10</volume><issue>1</issue><spage>109</spage><epage>129</epage><pages>109-129</pages><issn>1054-3406</issn><eissn>1520-5711</eissn><abstract>Generalized linear models are developed for crossover trials with no carryover effects and fixed subject effects. A general multinominal model for the distribution of data is considered. This subsumes both binary and categorical data. Conditional inferences eliminate subject effects by conditioning on their sufficient statistics. For normal data, least-squares analysis is exact with identical treatment inferences from unconditional and conditional analyses. For Poisson data, unconditional and conditional analyses are also identical, but for multinomial data this is not the case and the unconditional analysis is invalid. For multinomial data, asymptotic tests of both treatment effects and goodness of fit are unreliable with small samples. Procedures for exact tests are developed to overcome such problems, using enumeration, random sampling, and a hybrid of importance sampling and enumeration. A four-period binary crossover trial is used to illustrate an exact test of treatment effects by a two-stage sampling procedure based on a factorization of the conditional distribution of the sufficient statistics. An exact test of goodness of fit on the same data illustrates a two-stage scheme mixing importance sampling and enumeration.</abstract><cop>England</cop><pub>Taylor &amp; Francis Group</pub><pmid>10709805</pmid><doi>10.1081/BIP-100101017</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-3406
ispartof Journal of biopharmaceutical statistics, 2000-02, Vol.10 (1), p.109-129
issn 1054-3406
1520-5711
language eng
recordid cdi_crossref_primary_10_1081_BIP_100101017
source MEDLINE; EBSCOhost Business Source Complete; Access via Taylor & Francis
subjects Binomial Distribution
Conditional inference
Cross-Over Studies
Crossover trials
Double-Blind Method
Exact tests
Humans
Hybrid sampling
Importance sampling
Likelihood Functions
Multivariate Analysis
Poisson Distribution
Randomized Controlled Trials as Topic - methods
Sampling Studies
Statistics as Topic - methods
title CONDITIONAL AND EXACT TESTS IN CROSSOVER TRIALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONDITIONAL%20AND%20EXACT%20TESTS%20IN%20CROSSOVER%20TRIALS&rft.jtitle=Journal%20of%20biopharmaceutical%20statistics&rft.au=Patefield,%20Mike&rft.date=2000-02-15&rft.volume=10&rft.issue=1&rft.spage=109&rft.epage=129&rft.pages=109-129&rft.issn=1054-3406&rft.eissn=1520-5711&rft_id=info:doi/10.1081/BIP-100101017&rft_dat=%3Cproquest_cross%3E70960718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70960718&rft_id=info:pmid/10709805&rfr_iscdi=true