Adequate soliton solutions to the time fractional Zakharov-Kuznetsov equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation

The time fractional (2, 2, 2) Zakharov-Kuznetsov (ZK) equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation demonstrate the characteristic of shallow water waves, turbulent motion, waves of electro-hydro-dynamics in the local electric field, sound wave, wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arab journal of basic and applied sciences 2021, Vol.28 (1), p.370-385
Hauptverfasser: Islam, Nurul, Parvin, Rehana, Pervin, Rashidah, Akbar, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 1
container_start_page 370
container_title Arab journal of basic and applied sciences
container_volume 28
creator Islam, Nurul
Parvin, Rehana
Pervin, Rashidah
Akbar, Ali
description The time fractional (2, 2, 2) Zakharov-Kuznetsov (ZK) equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation demonstrate the characteristic of shallow water waves, turbulent motion, waves of electro-hydro-dynamics in the local electric field, sound wave, waves of driving flow of fluid, ion acoustic waves in plasmas, traffic flow, financial mathematics, etc. The time-fractional (2, 2, 2) ZK equation is the particular case of the general time-fractional (λ, μ,δ ) ZK equation, where λ, μ represent the space coordinate and δ represents the temporal coordinate. Hereinto to evade the complexity and to ascertain soliton solutions of this model, we accept λ=2, μ=2, δ=2 and in this case, the general ZK equation is called the time-fractional (2, 2, 2) ZK equation. In this article by making use of the concept of fractional complex transformation, the auxiliary equation method is put in use to search the closed form soliton solutions to the above indicated fractional nonlinear equations (FNLEs).The ascertained solutions are in the form of exponential, rational, hyperbolic and trigonometry functions with significant precision. We illustrate the soliton solutions relating to physical concern by setting the definite values of the free parameters through depicting diagram and interpreted the physical phenomena. The developed solutions assert that the method is effective, able to measure NLEEs, influential, powerful and offer vast amount of travelling wave solutions of nonlinear evolution equations in the area of mathematical sciences and engineering.
doi_str_mv 10.1080/25765299.2021.1969740
format Article
fullrecord <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_25765299_2021_1969740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_39cca3800a934069855ba2a3d2170bc3</doaj_id><sourcerecordid>1340642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3610-15a13b87950d40df7f0d52a0a8e64ff896ded012101859611997e481c9f3a69d3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EElHpI4DmBRz8M_bYO9oKaEURG7rpxrrxD3GY2MV2itJn4WGZSUpZ1psrnevz3WsfhN5SsqREkfdMDFIwrZeMMLqkWuqhJy_QYtbx3HiJFlRRgbkS7DU6rXVDpiPZwCVdoD9nzv_aQfNdzWNsOc1112JOtWu5a2vftbj1XShgZxXG7hZ-rqHke_xl95B8q_m-OyCmbgfJHTz1DqzHzzvxuU8b2MaEz6cb-Cusc9o_4d6gVwHG6k8f6wm6-fTx-8Ulvv72-eri7Brb6Q0EUwGUr9SgBXE9cWEIxAkGBJSXfQhKS-cdoYwSqoSWlGo9-F5RqwMHqR0_QVdHrsuwMXclbqHsTYZoDkIuPwyUFu3oDdfWAleEgOY9kVoJsQIG3DE6kJXlE0scWbbkWosPTzxKzJyY-ZeYmRMzj4lNvg9HX0whly38zmV0psF-zGX6wmRjNfw5xLsjwk_zfID_k-dVe8b_Ar6eqdE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adequate soliton solutions to the time fractional Zakharov-Kuznetsov equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Islam, Nurul ; Parvin, Rehana ; Pervin, Rashidah ; Akbar, Ali</creator><creatorcontrib>Islam, Nurul ; Parvin, Rehana ; Pervin, Rashidah ; Akbar, Ali</creatorcontrib><description>The time fractional (2, 2, 2) Zakharov-Kuznetsov (ZK) equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation demonstrate the characteristic of shallow water waves, turbulent motion, waves of electro-hydro-dynamics in the local electric field, sound wave, waves of driving flow of fluid, ion acoustic waves in plasmas, traffic flow, financial mathematics, etc. The time-fractional (2, 2, 2) ZK equation is the particular case of the general time-fractional (λ, μ,δ ) ZK equation, where λ, μ represent the space coordinate and δ represents the temporal coordinate. Hereinto to evade the complexity and to ascertain soliton solutions of this model, we accept λ=2, μ=2, δ=2 and in this case, the general ZK equation is called the time-fractional (2, 2, 2) ZK equation. In this article by making use of the concept of fractional complex transformation, the auxiliary equation method is put in use to search the closed form soliton solutions to the above indicated fractional nonlinear equations (FNLEs).The ascertained solutions are in the form of exponential, rational, hyperbolic and trigonometry functions with significant precision. We illustrate the soliton solutions relating to physical concern by setting the definite values of the free parameters through depicting diagram and interpreted the physical phenomena. The developed solutions assert that the method is effective, able to measure NLEEs, influential, powerful and offer vast amount of travelling wave solutions of nonlinear evolution equations in the area of mathematical sciences and engineering.</description><identifier>ISSN: 1815-3852</identifier><identifier>ISSN: 2576-5299</identifier><identifier>EISSN: 2576-5299</identifier><identifier>DOI: 10.1080/25765299.2021.1969740</identifier><language>eng</language><publisher>Manama, Bahrain: University of Bahrain, College of Science</publisher><subject>Auxiliary equation method ; complex transformation ; nonlinear fractional differential equation ; the ZK equation ; the ZKBBM equation</subject><ispartof>Arab journal of basic and applied sciences, 2021, Vol.28 (1), p.370-385</ispartof><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of the University of Bahrain. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3610-15a13b87950d40df7f0d52a0a8e64ff896ded012101859611997e481c9f3a69d3</citedby><cites>FETCH-LOGICAL-c3610-15a13b87950d40df7f0d52a0a8e64ff896ded012101859611997e481c9f3a69d3</cites><orcidid>0000-0001-5688-6259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/25765299.2021.1969740$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/25765299.2021.1969740$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Islam, Nurul</creatorcontrib><creatorcontrib>Parvin, Rehana</creatorcontrib><creatorcontrib>Pervin, Rashidah</creatorcontrib><creatorcontrib>Akbar, Ali</creatorcontrib><title>Adequate soliton solutions to the time fractional Zakharov-Kuznetsov equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation</title><title>Arab journal of basic and applied sciences</title><description>The time fractional (2, 2, 2) Zakharov-Kuznetsov (ZK) equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation demonstrate the characteristic of shallow water waves, turbulent motion, waves of electro-hydro-dynamics in the local electric field, sound wave, waves of driving flow of fluid, ion acoustic waves in plasmas, traffic flow, financial mathematics, etc. The time-fractional (2, 2, 2) ZK equation is the particular case of the general time-fractional (λ, μ,δ ) ZK equation, where λ, μ represent the space coordinate and δ represents the temporal coordinate. Hereinto to evade the complexity and to ascertain soliton solutions of this model, we accept λ=2, μ=2, δ=2 and in this case, the general ZK equation is called the time-fractional (2, 2, 2) ZK equation. In this article by making use of the concept of fractional complex transformation, the auxiliary equation method is put in use to search the closed form soliton solutions to the above indicated fractional nonlinear equations (FNLEs).The ascertained solutions are in the form of exponential, rational, hyperbolic and trigonometry functions with significant precision. We illustrate the soliton solutions relating to physical concern by setting the definite values of the free parameters through depicting diagram and interpreted the physical phenomena. The developed solutions assert that the method is effective, able to measure NLEEs, influential, powerful and offer vast amount of travelling wave solutions of nonlinear evolution equations in the area of mathematical sciences and engineering.</description><subject>Auxiliary equation method</subject><subject>complex transformation</subject><subject>nonlinear fractional differential equation</subject><subject>the ZK equation</subject><subject>the ZKBBM equation</subject><issn>1815-3852</issn><issn>2576-5299</issn><issn>2576-5299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1uEzEUhS0EElHpI4DmBRz8M_bYO9oKaEURG7rpxrrxD3GY2MV2itJn4WGZSUpZ1psrnevz3WsfhN5SsqREkfdMDFIwrZeMMLqkWuqhJy_QYtbx3HiJFlRRgbkS7DU6rXVDpiPZwCVdoD9nzv_aQfNdzWNsOc1112JOtWu5a2vftbj1XShgZxXG7hZ-rqHke_xl95B8q_m-OyCmbgfJHTz1DqzHzzvxuU8b2MaEz6cb-Cusc9o_4d6gVwHG6k8f6wm6-fTx-8Ulvv72-eri7Brb6Q0EUwGUr9SgBXE9cWEIxAkGBJSXfQhKS-cdoYwSqoSWlGo9-F5RqwMHqR0_QVdHrsuwMXclbqHsTYZoDkIuPwyUFu3oDdfWAleEgOY9kVoJsQIG3DE6kJXlE0scWbbkWosPTzxKzJyY-ZeYmRMzj4lNvg9HX0whly38zmV0psF-zGX6wmRjNfw5xLsjwk_zfID_k-dVe8b_Ar6eqdE</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Islam, Nurul</creator><creator>Parvin, Rehana</creator><creator>Pervin, Rashidah</creator><creator>Akbar, Ali</creator><general>University of Bahrain, College of Science</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5688-6259</orcidid></search><sort><creationdate>2021</creationdate><title>Adequate soliton solutions to the time fractional Zakharov-Kuznetsov equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation</title><author>Islam, Nurul ; Parvin, Rehana ; Pervin, Rashidah ; Akbar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3610-15a13b87950d40df7f0d52a0a8e64ff896ded012101859611997e481c9f3a69d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Auxiliary equation method</topic><topic>complex transformation</topic><topic>nonlinear fractional differential equation</topic><topic>the ZK equation</topic><topic>the ZKBBM equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Nurul</creatorcontrib><creatorcontrib>Parvin, Rehana</creatorcontrib><creatorcontrib>Pervin, Rashidah</creatorcontrib><creatorcontrib>Akbar, Ali</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Arab journal of basic and applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Nurul</au><au>Parvin, Rehana</au><au>Pervin, Rashidah</au><au>Akbar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adequate soliton solutions to the time fractional Zakharov-Kuznetsov equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation</atitle><jtitle>Arab journal of basic and applied sciences</jtitle><date>2021</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>370</spage><epage>385</epage><pages>370-385</pages><issn>1815-3852</issn><issn>2576-5299</issn><eissn>2576-5299</eissn><abstract>The time fractional (2, 2, 2) Zakharov-Kuznetsov (ZK) equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation demonstrate the characteristic of shallow water waves, turbulent motion, waves of electro-hydro-dynamics in the local electric field, sound wave, waves of driving flow of fluid, ion acoustic waves in plasmas, traffic flow, financial mathematics, etc. The time-fractional (2, 2, 2) ZK equation is the particular case of the general time-fractional (λ, μ,δ ) ZK equation, where λ, μ represent the space coordinate and δ represents the temporal coordinate. Hereinto to evade the complexity and to ascertain soliton solutions of this model, we accept λ=2, μ=2, δ=2 and in this case, the general ZK equation is called the time-fractional (2, 2, 2) ZK equation. In this article by making use of the concept of fractional complex transformation, the auxiliary equation method is put in use to search the closed form soliton solutions to the above indicated fractional nonlinear equations (FNLEs).The ascertained solutions are in the form of exponential, rational, hyperbolic and trigonometry functions with significant precision. We illustrate the soliton solutions relating to physical concern by setting the definite values of the free parameters through depicting diagram and interpreted the physical phenomena. The developed solutions assert that the method is effective, able to measure NLEEs, influential, powerful and offer vast amount of travelling wave solutions of nonlinear evolution equations in the area of mathematical sciences and engineering.</abstract><cop>Manama, Bahrain</cop><pub>University of Bahrain, College of Science</pub><doi>10.1080/25765299.2021.1969740</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5688-6259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1815-3852
ispartof Arab journal of basic and applied sciences, 2021, Vol.28 (1), p.370-385
issn 1815-3852
2576-5299
2576-5299
language eng
recordid cdi_crossref_primary_10_1080_25765299_2021_1969740
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry
subjects Auxiliary equation method
complex transformation
nonlinear fractional differential equation
the ZK equation
the ZKBBM equation
title Adequate soliton solutions to the time fractional Zakharov-Kuznetsov equation and the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A04%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adequate%20soliton%20solutions%20to%20the%20time%20fractional%20Zakharov-Kuznetsov%20equation%20and%20the%20space-time%20fractional%20Zakharov-Kuznetsov-Benjamin-Bona-Mahony%20equation&rft.jtitle=Arab%20journal%20of%20basic%20and%20applied%20sciences&rft.au=Islam,%20Nurul&rft.date=2021&rft.volume=28&rft.issue=1&rft.spage=370&rft.epage=385&rft.pages=370-385&rft.issn=1815-3852&rft.eissn=2576-5299&rft_id=info:doi/10.1080/25765299.2021.1969740&rft_dat=%3Cemarefa_cross%3E1340642%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_39cca3800a934069855ba2a3d2170bc3&rfr_iscdi=true