Forecasting natural gas consumption in residential and commercial sectors in the US
The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and no...
Gespeichert in:
Veröffentlicht in: | Journal of business analytics 2023-01, Vol.6 (1), p.77-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Journal of business analytics |
container_volume | 6 |
creator | Zu, Xingxing Wang, Xiaoyin Cui, Yunwei |
description | The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts. |
doi_str_mv | 10.1080/2573234X.2022.2064777 |
format | Article |
fullrecord | <record><control><sourceid>econis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_2573234X_2022_2064777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1834128315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-259c0e9c7b3ca56a4b2c7e31a5bd83d01706096a8f6e26e4237fdbf4dad5b6773</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWGofQdgX2Jq_m-1NKVaFgoda6G2ZTbI1spuUJCJ9e7O06s1DJpnM92UmP4RuCZ4TXOM7KiSjjO_mFFOaQ8WllBdoMt6XlIn68vfMd9doFuMHxpiOi5EJ2qx8MApism5fOEifAfpiD7FQ3sXP4ZCsd4V1RTDRauOSzWVwOpeHwQQ1ptGo5EMcVendFNvNDbrqoI9mdt6naLt6fFs-l-vXp5flw7pUjIhUUrFQ2CyUbJkCUQFvqZKGERCtrpnGROIKLyqou8rQynDKZKfbjmvQoq2kZFMkTu-q4GMMpmsOwQ4Qjg3BzQin-YHTjHCaM5zsK04-kz9p45-rZpzQOg-XJfcniXWdDwN8-dDrJsGx96EL4FS2sf-7fAO9qHcR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting natural gas consumption in residential and commercial sectors in the US</title><source>Alma/SFX Local Collection</source><creator>Zu, Xingxing ; Wang, Xiaoyin ; Cui, Yunwei</creator><creatorcontrib>Zu, Xingxing ; Wang, Xiaoyin ; Cui, Yunwei</creatorcontrib><description>The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts.</description><identifier>ISSN: 2573-234X</identifier><identifier>EISSN: 2573-2358</identifier><identifier>DOI: 10.1080/2573234X.2022.2064777</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Energy forecasting ; penalised regression ; smoothing parameter selection ; splines ; time series</subject><ispartof>Journal of business analytics, 2023-01, Vol.6 (1), p.77-94</ispartof><rights>2022 The Operational Research Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-259c0e9c7b3ca56a4b2c7e31a5bd83d01706096a8f6e26e4237fdbf4dad5b6773</cites><orcidid>0000-0002-9980-2083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Zu, Xingxing</creatorcontrib><creatorcontrib>Wang, Xiaoyin</creatorcontrib><creatorcontrib>Cui, Yunwei</creatorcontrib><title>Forecasting natural gas consumption in residential and commercial sectors in the US</title><title>Journal of business analytics</title><description>The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts.</description><subject>Energy forecasting</subject><subject>penalised regression</subject><subject>smoothing parameter selection</subject><subject>splines</subject><subject>time series</subject><issn>2573-234X</issn><issn>2573-2358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWGofQdgX2Jq_m-1NKVaFgoda6G2ZTbI1spuUJCJ9e7O06s1DJpnM92UmP4RuCZ4TXOM7KiSjjO_mFFOaQ8WllBdoMt6XlIn68vfMd9doFuMHxpiOi5EJ2qx8MApism5fOEifAfpiD7FQ3sXP4ZCsd4V1RTDRauOSzWVwOpeHwQQ1ptGo5EMcVendFNvNDbrqoI9mdt6naLt6fFs-l-vXp5flw7pUjIhUUrFQ2CyUbJkCUQFvqZKGERCtrpnGROIKLyqou8rQynDKZKfbjmvQoq2kZFMkTu-q4GMMpmsOwQ4Qjg3BzQin-YHTjHCaM5zsK04-kz9p45-rZpzQOg-XJfcniXWdDwN8-dDrJsGx96EL4FS2sf-7fAO9qHcR</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Zu, Xingxing</creator><creator>Wang, Xiaoyin</creator><creator>Cui, Yunwei</creator><general>Taylor & Francis</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9980-2083</orcidid></search><sort><creationdate>20230102</creationdate><title>Forecasting natural gas consumption in residential and commercial sectors in the US</title><author>Zu, Xingxing ; Wang, Xiaoyin ; Cui, Yunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-259c0e9c7b3ca56a4b2c7e31a5bd83d01706096a8f6e26e4237fdbf4dad5b6773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy forecasting</topic><topic>penalised regression</topic><topic>smoothing parameter selection</topic><topic>splines</topic><topic>time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Xingxing</creatorcontrib><creatorcontrib>Wang, Xiaoyin</creatorcontrib><creatorcontrib>Cui, Yunwei</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business analytics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Xingxing</au><au>Wang, Xiaoyin</au><au>Cui, Yunwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting natural gas consumption in residential and commercial sectors in the US</atitle><jtitle>Journal of business analytics</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>77</spage><epage>94</epage><pages>77-94</pages><issn>2573-234X</issn><eissn>2573-2358</eissn><abstract>The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts.</abstract><pub>Taylor & Francis</pub><doi>10.1080/2573234X.2022.2064777</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9980-2083</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2573-234X |
ispartof | Journal of business analytics, 2023-01, Vol.6 (1), p.77-94 |
issn | 2573-234X 2573-2358 |
language | eng |
recordid | cdi_crossref_primary_10_1080_2573234X_2022_2064777 |
source | Alma/SFX Local Collection |
subjects | Energy forecasting penalised regression smoothing parameter selection splines time series |
title | Forecasting natural gas consumption in residential and commercial sectors in the US |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20natural%20gas%20consumption%20in%20residential%20and%20commercial%20sectors%20in%20the%20US&rft.jtitle=Journal%20of%20business%20analytics&rft.au=Zu,%20Xingxing&rft.date=2023-01-02&rft.volume=6&rft.issue=1&rft.spage=77&rft.epage=94&rft.pages=77-94&rft.issn=2573-234X&rft.eissn=2573-2358&rft_id=info:doi/10.1080/2573234X.2022.2064777&rft_dat=%3Ceconis_cross%3E1834128315%3C/econis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |