Forecasting natural gas consumption in residential and commercial sectors in the US

The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business analytics 2023-01, Vol.6 (1), p.77-94
Hauptverfasser: Zu, Xingxing, Wang, Xiaoyin, Cui, Yunwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 77
container_title Journal of business analytics
container_volume 6
creator Zu, Xingxing
Wang, Xiaoyin
Cui, Yunwei
description The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts.
doi_str_mv 10.1080/2573234X.2022.2064777
format Article
fullrecord <record><control><sourceid>econis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_2573234X_2022_2064777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1834128315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-259c0e9c7b3ca56a4b2c7e31a5bd83d01706096a8f6e26e4237fdbf4dad5b6773</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWGofQdgX2Jq_m-1NKVaFgoda6G2ZTbI1spuUJCJ9e7O06s1DJpnM92UmP4RuCZ4TXOM7KiSjjO_mFFOaQ8WllBdoMt6XlIn68vfMd9doFuMHxpiOi5EJ2qx8MApism5fOEifAfpiD7FQ3sXP4ZCsd4V1RTDRauOSzWVwOpeHwQQ1ptGo5EMcVendFNvNDbrqoI9mdt6naLt6fFs-l-vXp5flw7pUjIhUUrFQ2CyUbJkCUQFvqZKGERCtrpnGROIKLyqou8rQynDKZKfbjmvQoq2kZFMkTu-q4GMMpmsOwQ4Qjg3BzQin-YHTjHCaM5zsK04-kz9p45-rZpzQOg-XJfcniXWdDwN8-dDrJsGx96EL4FS2sf-7fAO9qHcR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting natural gas consumption in residential and commercial sectors in the US</title><source>Alma/SFX Local Collection</source><creator>Zu, Xingxing ; Wang, Xiaoyin ; Cui, Yunwei</creator><creatorcontrib>Zu, Xingxing ; Wang, Xiaoyin ; Cui, Yunwei</creatorcontrib><description>The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts.</description><identifier>ISSN: 2573-234X</identifier><identifier>EISSN: 2573-2358</identifier><identifier>DOI: 10.1080/2573234X.2022.2064777</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Energy forecasting ; penalised regression ; smoothing parameter selection ; splines ; time series</subject><ispartof>Journal of business analytics, 2023-01, Vol.6 (1), p.77-94</ispartof><rights>2022 The Operational Research Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-259c0e9c7b3ca56a4b2c7e31a5bd83d01706096a8f6e26e4237fdbf4dad5b6773</cites><orcidid>0000-0002-9980-2083</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Zu, Xingxing</creatorcontrib><creatorcontrib>Wang, Xiaoyin</creatorcontrib><creatorcontrib>Cui, Yunwei</creatorcontrib><title>Forecasting natural gas consumption in residential and commercial sectors in the US</title><title>Journal of business analytics</title><description>The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts.</description><subject>Energy forecasting</subject><subject>penalised regression</subject><subject>smoothing parameter selection</subject><subject>splines</subject><subject>time series</subject><issn>2573-234X</issn><issn>2573-2358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWGofQdgX2Jq_m-1NKVaFgoda6G2ZTbI1spuUJCJ9e7O06s1DJpnM92UmP4RuCZ4TXOM7KiSjjO_mFFOaQ8WllBdoMt6XlIn68vfMd9doFuMHxpiOi5EJ2qx8MApism5fOEifAfpiD7FQ3sXP4ZCsd4V1RTDRauOSzWVwOpeHwQQ1ptGo5EMcVendFNvNDbrqoI9mdt6naLt6fFs-l-vXp5flw7pUjIhUUrFQ2CyUbJkCUQFvqZKGERCtrpnGROIKLyqou8rQynDKZKfbjmvQoq2kZFMkTu-q4GMMpmsOwQ4Qjg3BzQin-YHTjHCaM5zsK04-kz9p45-rZpzQOg-XJfcniXWdDwN8-dDrJsGx96EL4FS2sf-7fAO9qHcR</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Zu, Xingxing</creator><creator>Wang, Xiaoyin</creator><creator>Cui, Yunwei</creator><general>Taylor &amp; Francis</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9980-2083</orcidid></search><sort><creationdate>20230102</creationdate><title>Forecasting natural gas consumption in residential and commercial sectors in the US</title><author>Zu, Xingxing ; Wang, Xiaoyin ; Cui, Yunwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-259c0e9c7b3ca56a4b2c7e31a5bd83d01706096a8f6e26e4237fdbf4dad5b6773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy forecasting</topic><topic>penalised regression</topic><topic>smoothing parameter selection</topic><topic>splines</topic><topic>time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zu, Xingxing</creatorcontrib><creatorcontrib>Wang, Xiaoyin</creatorcontrib><creatorcontrib>Cui, Yunwei</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Journal of business analytics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zu, Xingxing</au><au>Wang, Xiaoyin</au><au>Cui, Yunwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting natural gas consumption in residential and commercial sectors in the US</atitle><jtitle>Journal of business analytics</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>77</spage><epage>94</epage><pages>77-94</pages><issn>2573-234X</issn><eissn>2573-2358</eissn><abstract>The paper proposes a parallel forecasting approach for weekly natural gas consumption in the US residential and commercial sectors, which models scrape data and ratio data separately and then combines the outputs to generate the forecasts. To improve forecasting accuracy, both semi-parametric and nonparametric models, including dynamic linear regression model and dynamic semi-parametric model, are adopted to model the effects of weather variables, and time series techniques are employed to address the serial correlation exhibited by the data. An algorithm focusing on forecasting accuracy is proposed to select the smoothing parameter for serially correlated data. The proposed model is empirically tested using data in the New England area from 2013 to 2018 and benchmarked against some deep learning approaches including Deep Neural Network, Long Short-Term Memory Neural Network, and Gated Recurrent Unit Neural Network methods. Overall, the results show that the proposed approach performs well in generating accurate forecasts.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/2573234X.2022.2064777</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9980-2083</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2573-234X
ispartof Journal of business analytics, 2023-01, Vol.6 (1), p.77-94
issn 2573-234X
2573-2358
language eng
recordid cdi_crossref_primary_10_1080_2573234X_2022_2064777
source Alma/SFX Local Collection
subjects Energy forecasting
penalised regression
smoothing parameter selection
splines
time series
title Forecasting natural gas consumption in residential and commercial sectors in the US
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-econis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20natural%20gas%20consumption%20in%20residential%20and%20commercial%20sectors%20in%20the%20US&rft.jtitle=Journal%20of%20business%20analytics&rft.au=Zu,%20Xingxing&rft.date=2023-01-02&rft.volume=6&rft.issue=1&rft.spage=77&rft.epage=94&rft.pages=77-94&rft.issn=2573-234X&rft.eissn=2573-2358&rft_id=info:doi/10.1080/2573234X.2022.2064777&rft_dat=%3Ceconis_cross%3E1834128315%3C/econis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true