A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces

In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a -convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cogent mathematics 2017-01, Vol.4 (1), p.1396642
Hauptverfasser: Rastgoo, M., Abkar, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1396642
container_title Cogent mathematics
container_volume 4
creator Rastgoo, M.
Abkar, A.
description In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a -convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm.
doi_str_mv 10.1080/23311835.2017.1396642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_23311835_2017_1396642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012875366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-75c86d61a73804c4e606c8b7c37720827d250c73dd69be4eab939f197312bb263</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxKb2J5iQuNHFVB4zwOxsGl9JEzd1TRiGUZoOjDC17b-XydTElat7L-eeA3wAXGM0x0ige0IpxoIWc4Iwn2NaMpaTMzAZzrNBOP_TX4JZjBuEEM4545RMwOcCOrOHtjdB9dY72AWvTYyw8QGqLk0H246Kb2BjD6aGnbeuj8PcGuWg884cOuWi_TawTR7rPiK0Di4X61t0B2OnUuIVuGjUNprZqU7B-9PjevmSrd6eX5eLVaYJo33GCy1YzbDiVKBc54YhpkXFNeWcIEF4TQqkOa1rVlYmN6oqadngklNMqipFTMHNmJue_rUzsZcbvwsuXSkTISJ4QdmwVYxbOvgYg2lkF9I_w1FiJAeu8pfr4OLyxDX5HkafdQlQq_Y-bGvZq-PWhyYop22U9P-IH2Z6feg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012875366</pqid></control><display><type>article</type><title>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</title><source>Taylor &amp; Francis Open Access Journals</source><creator>Rastgoo, M. ; Abkar, A.</creator><contributor>Liu, Lishan</contributor><creatorcontrib>Rastgoo, M. ; Abkar, A. ; Liu, Lishan</creatorcontrib><description>In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a -convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm.</description><identifier>ISSN: 2331-1835</identifier><identifier>EISSN: 2331-1835</identifier><identifier>EISSN: 2768-4830</identifier><identifier>DOI: 10.1080/23311835.2017.1396642</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>47H09 ; 47H10 ; CAT space ; convergence ; fixed point ; iterative algorithm ; Iterative algorithms ; Iterative methods ; mean nonexpansive mapping</subject><ispartof>Cogent mathematics, 2017-01, Vol.4 (1), p.1396642</ispartof><rights>2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license 2017</rights><rights>2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-75c86d61a73804c4e606c8b7c37720827d250c73dd69be4eab939f197312bb263</cites><orcidid>0000-0001-5163-7608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311835.2017.1396642$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/23311835.2017.1396642$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27479,27901,27902,59116,59117</link.rule.ids></links><search><contributor>Liu, Lishan</contributor><creatorcontrib>Rastgoo, M.</creatorcontrib><creatorcontrib>Abkar, A.</creatorcontrib><title>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</title><title>Cogent mathematics</title><description>In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a -convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm.</description><subject>47H09</subject><subject>47H10</subject><subject>CAT space</subject><subject>convergence</subject><subject>fixed point</subject><subject>iterative algorithm</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>mean nonexpansive mapping</subject><issn>2331-1835</issn><issn>2331-1835</issn><issn>2768-4830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtPAyEUhYnRxKb2J5iQuNHFVB4zwOxsGl9JEzd1TRiGUZoOjDC17b-XydTElat7L-eeA3wAXGM0x0ige0IpxoIWc4Iwn2NaMpaTMzAZzrNBOP_TX4JZjBuEEM4545RMwOcCOrOHtjdB9dY72AWvTYyw8QGqLk0H246Kb2BjD6aGnbeuj8PcGuWg884cOuWi_TawTR7rPiK0Di4X61t0B2OnUuIVuGjUNprZqU7B-9PjevmSrd6eX5eLVaYJo33GCy1YzbDiVKBc54YhpkXFNeWcIEF4TQqkOa1rVlYmN6oqadngklNMqipFTMHNmJue_rUzsZcbvwsuXSkTISJ4QdmwVYxbOvgYg2lkF9I_w1FiJAeu8pfr4OLyxDX5HkafdQlQq_Y-bGvZq-PWhyYop22U9P-IH2Z6feg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Rastgoo, M.</creator><creator>Abkar, A.</creator><general>Cogent</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5163-7608</orcidid></search><sort><creationdate>20170101</creationdate><title>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</title><author>Rastgoo, M. ; Abkar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-75c86d61a73804c4e606c8b7c37720827d250c73dd69be4eab939f197312bb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>47H09</topic><topic>47H10</topic><topic>CAT space</topic><topic>convergence</topic><topic>fixed point</topic><topic>iterative algorithm</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>mean nonexpansive mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rastgoo, M.</creatorcontrib><creatorcontrib>Abkar, A.</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Cogent mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rastgoo, M.</au><au>Abkar, A.</au><au>Liu, Lishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</atitle><jtitle>Cogent mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>4</volume><issue>1</issue><spage>1396642</spage><pages>1396642-</pages><issn>2331-1835</issn><eissn>2331-1835</eissn><eissn>2768-4830</eissn><abstract>In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a -convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311835.2017.1396642</doi><orcidid>https://orcid.org/0000-0001-5163-7608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-1835
ispartof Cogent mathematics, 2017-01, Vol.4 (1), p.1396642
issn 2331-1835
2331-1835
2768-4830
language eng
recordid cdi_crossref_primary_10_1080_23311835_2017_1396642
source Taylor & Francis Open Access Journals
subjects 47H09
47H10
CAT space
convergence
fixed point
iterative algorithm
Iterative algorithms
Iterative methods
mean nonexpansive mapping
title A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20iteration%20process%20for%20approximation%20of%20fixed%20points%20of%20mean%20nonexpansive%20mappings%20in%20CAT(0)%20spaces&rft.jtitle=Cogent%20mathematics&rft.au=Rastgoo,%20M.&rft.date=2017-01-01&rft.volume=4&rft.issue=1&rft.spage=1396642&rft.pages=1396642-&rft.issn=2331-1835&rft.eissn=2331-1835&rft_id=info:doi/10.1080/23311835.2017.1396642&rft_dat=%3Cproquest_cross%3E2012875366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012875366&rft_id=info:pmid/&rfr_iscdi=true