A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces
In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a -convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement...
Gespeichert in:
Veröffentlicht in: | Cogent mathematics 2017-01, Vol.4 (1), p.1396642 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1396642 |
container_title | Cogent mathematics |
container_volume | 4 |
creator | Rastgoo, M. Abkar, A. |
description | In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a
-convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm. |
doi_str_mv | 10.1080/23311835.2017.1396642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_23311835_2017_1396642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012875366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-75c86d61a73804c4e606c8b7c37720827d250c73dd69be4eab939f197312bb263</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxKb2J5iQuNHFVB4zwOxsGl9JEzd1TRiGUZoOjDC17b-XydTElat7L-eeA3wAXGM0x0ige0IpxoIWc4Iwn2NaMpaTMzAZzrNBOP_TX4JZjBuEEM4545RMwOcCOrOHtjdB9dY72AWvTYyw8QGqLk0H246Kb2BjD6aGnbeuj8PcGuWg884cOuWi_TawTR7rPiK0Di4X61t0B2OnUuIVuGjUNprZqU7B-9PjevmSrd6eX5eLVaYJo33GCy1YzbDiVKBc54YhpkXFNeWcIEF4TQqkOa1rVlYmN6oqadngklNMqipFTMHNmJue_rUzsZcbvwsuXSkTISJ4QdmwVYxbOvgYg2lkF9I_w1FiJAeu8pfr4OLyxDX5HkafdQlQq_Y-bGvZq-PWhyYop22U9P-IH2Z6feg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012875366</pqid></control><display><type>article</type><title>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</title><source>Taylor & Francis Open Access Journals</source><creator>Rastgoo, M. ; Abkar, A.</creator><contributor>Liu, Lishan</contributor><creatorcontrib>Rastgoo, M. ; Abkar, A. ; Liu, Lishan</creatorcontrib><description>In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a
-convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm.</description><identifier>ISSN: 2331-1835</identifier><identifier>EISSN: 2331-1835</identifier><identifier>EISSN: 2768-4830</identifier><identifier>DOI: 10.1080/23311835.2017.1396642</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>47H09 ; 47H10 ; CAT space ; convergence ; fixed point ; iterative algorithm ; Iterative algorithms ; Iterative methods ; mean nonexpansive mapping</subject><ispartof>Cogent mathematics, 2017-01, Vol.4 (1), p.1396642</ispartof><rights>2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license 2017</rights><rights>2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c263t-75c86d61a73804c4e606c8b7c37720827d250c73dd69be4eab939f197312bb263</cites><orcidid>0000-0001-5163-7608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311835.2017.1396642$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/23311835.2017.1396642$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27479,27901,27902,59116,59117</link.rule.ids></links><search><contributor>Liu, Lishan</contributor><creatorcontrib>Rastgoo, M.</creatorcontrib><creatorcontrib>Abkar, A.</creatorcontrib><title>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</title><title>Cogent mathematics</title><description>In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a
-convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm.</description><subject>47H09</subject><subject>47H10</subject><subject>CAT space</subject><subject>convergence</subject><subject>fixed point</subject><subject>iterative algorithm</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>mean nonexpansive mapping</subject><issn>2331-1835</issn><issn>2331-1835</issn><issn>2768-4830</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtPAyEUhYnRxKb2J5iQuNHFVB4zwOxsGl9JEzd1TRiGUZoOjDC17b-XydTElat7L-eeA3wAXGM0x0ige0IpxoIWc4Iwn2NaMpaTMzAZzrNBOP_TX4JZjBuEEM4545RMwOcCOrOHtjdB9dY72AWvTYyw8QGqLk0H246Kb2BjD6aGnbeuj8PcGuWg884cOuWi_TawTR7rPiK0Di4X61t0B2OnUuIVuGjUNprZqU7B-9PjevmSrd6eX5eLVaYJo33GCy1YzbDiVKBc54YhpkXFNeWcIEF4TQqkOa1rVlYmN6oqadngklNMqipFTMHNmJue_rUzsZcbvwsuXSkTISJ4QdmwVYxbOvgYg2lkF9I_w1FiJAeu8pfr4OLyxDX5HkafdQlQq_Y-bGvZq-PWhyYop22U9P-IH2Z6feg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Rastgoo, M.</creator><creator>Abkar, A.</creator><general>Cogent</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5163-7608</orcidid></search><sort><creationdate>20170101</creationdate><title>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</title><author>Rastgoo, M. ; Abkar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-75c86d61a73804c4e606c8b7c37720827d250c73dd69be4eab939f197312bb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>47H09</topic><topic>47H10</topic><topic>CAT space</topic><topic>convergence</topic><topic>fixed point</topic><topic>iterative algorithm</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>mean nonexpansive mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rastgoo, M.</creatorcontrib><creatorcontrib>Abkar, A.</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Cogent mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rastgoo, M.</au><au>Abkar, A.</au><au>Liu, Lishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces</atitle><jtitle>Cogent mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>4</volume><issue>1</issue><spage>1396642</spage><pages>1396642-</pages><issn>2331-1835</issn><eissn>2331-1835</eissn><eissn>2768-4830</eissn><abstract>In this paper, we introduce a new iterative algorithm for approximating fixed points of mean nonexpansive mappings in CAT(0) spaces. We prove a
-convergence theorem under suitable conditions. The result we obtain improves and extends several recent results stated by many others; they also complement many known recent results in the literature. We then provide some numerical examples to illustrate our main result and to display the efficiency of the proposed algorithm.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311835.2017.1396642</doi><orcidid>https://orcid.org/0000-0001-5163-7608</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-1835 |
ispartof | Cogent mathematics, 2017-01, Vol.4 (1), p.1396642 |
issn | 2331-1835 2331-1835 2768-4830 |
language | eng |
recordid | cdi_crossref_primary_10_1080_23311835_2017_1396642 |
source | Taylor & Francis Open Access Journals |
subjects | 47H09 47H10 CAT space convergence fixed point iterative algorithm Iterative algorithms Iterative methods mean nonexpansive mapping |
title | A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20iteration%20process%20for%20approximation%20of%20fixed%20points%20of%20mean%20nonexpansive%20mappings%20in%20CAT(0)%20spaces&rft.jtitle=Cogent%20mathematics&rft.au=Rastgoo,%20M.&rft.date=2017-01-01&rft.volume=4&rft.issue=1&rft.spage=1396642&rft.pages=1396642-&rft.issn=2331-1835&rft.eissn=2331-1835&rft_id=info:doi/10.1080/23311835.2017.1396642&rft_dat=%3Cproquest_cross%3E2012875366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012875366&rft_id=info:pmid/&rfr_iscdi=true |