Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications
Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg 2 SiO 4 ) addition to biogenic hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , on the phase formation, physical and mechan...
Gespeichert in:
Veröffentlicht in: | Journal of Asian Ceramic Societies 2020-04, Vol.8 (2), p.373-386 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 2 |
container_start_page | 373 |
container_title | Journal of Asian Ceramic Societies |
container_volume | 8 |
creator | Naga, S.M. Hassan, A.M. Awaad, M. Killinger, A. Gadow, R. Bernstein, A. Sayed, M. |
description | Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg
2
SiO
4
) addition to biogenic hydroxyapatite, Ca
10
(PO
4
)
6
(OH)
2
, on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results. |
doi_str_mv | 10.1080/21870764.2020.1743416 |
format | Article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21870764_2020_1743416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c</doaj_id><sourcerecordid>oai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWGp_gpA_kHa_kk1uSrFaKHrR8zKZ3dQtaTbsBjT_3o2t4snTvLwz8xyeJLmlZElJSVaMlpLIQiwZYbGSggtaXCSzqc-mxeWffJ0sQjgQQqjkJZV0ljxvnA-D8XYwqw46l9XW7U1nMX0ftXefI_QwxGWK7ti7EFNIG-fTeHY02iK0KfR9G8NgXRdukqsG2mAW5zlP3jYPr-unbPfyuF3f7zIUjA-ZzgGgkFDntShkjVjRnOmSFIJgLBmjNZKybgQriobSCiputEBOSyM4MxWfJ9sTVzs4qN7bI_hRObDqu3B-r8APFlujGJYRkksoopxcSGAaKSWgG4rIK4ys_MRC70LwpvnlUaImx-rHsZocq7Pj-Hd3-rNdNHKED-dbrQYYW-cbDx3aoPj_iC-CW4Qp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Taylor & Francis (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Naga, S.M. ; Hassan, A.M. ; Awaad, M. ; Killinger, A. ; Gadow, R. ; Bernstein, A. ; Sayed, M.</creator><creatorcontrib>Naga, S.M. ; Hassan, A.M. ; Awaad, M. ; Killinger, A. ; Gadow, R. ; Bernstein, A. ; Sayed, M.</creatorcontrib><description>Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg
2
SiO
4
) addition to biogenic hydroxyapatite, Ca
10
(PO
4
)
6
(OH)
2
, on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results.</description><identifier>ISSN: 2187-0764</identifier><identifier>EISSN: 2187-0764</identifier><identifier>DOI: 10.1080/21870764.2020.1743416</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>cell culture ; Fish bones ; forsterite ; mechanical properties ; Mg-rich whitlockite</subject><ispartof>Journal of Asian Ceramic Societies, 2020-04, Vol.8 (2), p.373-386</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The Korean Ceramic Society and The Ceramic Society of Japan. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</citedby><cites>FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/21870764.2020.1743416$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/21870764.2020.1743416$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Naga, S.M.</creatorcontrib><creatorcontrib>Hassan, A.M.</creatorcontrib><creatorcontrib>Awaad, M.</creatorcontrib><creatorcontrib>Killinger, A.</creatorcontrib><creatorcontrib>Gadow, R.</creatorcontrib><creatorcontrib>Bernstein, A.</creatorcontrib><creatorcontrib>Sayed, M.</creatorcontrib><title>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</title><title>Journal of Asian Ceramic Societies</title><description>Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg
2
SiO
4
) addition to biogenic hydroxyapatite, Ca
10
(PO
4
)
6
(OH)
2
, on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results.</description><subject>cell culture</subject><subject>Fish bones</subject><subject>forsterite</subject><subject>mechanical properties</subject><subject>Mg-rich whitlockite</subject><issn>2187-0764</issn><issn>2187-0764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1Lw0AQhoMoWGp_gpA_kHa_kk1uSrFaKHrR8zKZ3dQtaTbsBjT_3o2t4snTvLwz8xyeJLmlZElJSVaMlpLIQiwZYbGSggtaXCSzqc-mxeWffJ0sQjgQQqjkJZV0ljxvnA-D8XYwqw46l9XW7U1nMX0ftXefI_QwxGWK7ti7EFNIG-fTeHY02iK0KfR9G8NgXRdukqsG2mAW5zlP3jYPr-unbPfyuF3f7zIUjA-ZzgGgkFDntShkjVjRnOmSFIJgLBmjNZKybgQriobSCiputEBOSyM4MxWfJ9sTVzs4qN7bI_hRObDqu3B-r8APFlujGJYRkksoopxcSGAaKSWgG4rIK4ys_MRC70LwpvnlUaImx-rHsZocq7Pj-Hd3-rNdNHKED-dbrQYYW-cbDx3aoPj_iC-CW4Qp</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Naga, S.M.</creator><creator>Hassan, A.M.</creator><creator>Awaad, M.</creator><creator>Killinger, A.</creator><creator>Gadow, R.</creator><creator>Bernstein, A.</creator><creator>Sayed, M.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200402</creationdate><title>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</title><author>Naga, S.M. ; Hassan, A.M. ; Awaad, M. ; Killinger, A. ; Gadow, R. ; Bernstein, A. ; Sayed, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cell culture</topic><topic>Fish bones</topic><topic>forsterite</topic><topic>mechanical properties</topic><topic>Mg-rich whitlockite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naga, S.M.</creatorcontrib><creatorcontrib>Hassan, A.M.</creatorcontrib><creatorcontrib>Awaad, M.</creatorcontrib><creatorcontrib>Killinger, A.</creatorcontrib><creatorcontrib>Gadow, R.</creatorcontrib><creatorcontrib>Bernstein, A.</creatorcontrib><creatorcontrib>Sayed, M.</creatorcontrib><collection>Access via Taylor & Francis (Open Access Collection)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Asian Ceramic Societies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naga, S.M.</au><au>Hassan, A.M.</au><au>Awaad, M.</au><au>Killinger, A.</au><au>Gadow, R.</au><au>Bernstein, A.</au><au>Sayed, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</atitle><jtitle>Journal of Asian Ceramic Societies</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>8</volume><issue>2</issue><spage>373</spage><epage>386</epage><pages>373-386</pages><issn>2187-0764</issn><eissn>2187-0764</eissn><abstract>Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg
2
SiO
4
) addition to biogenic hydroxyapatite, Ca
10
(PO
4
)
6
(OH)
2
, on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results.</abstract><pub>Taylor & Francis</pub><doi>10.1080/21870764.2020.1743416</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2187-0764 |
ispartof | Journal of Asian Ceramic Societies, 2020-04, Vol.8 (2), p.373-386 |
issn | 2187-0764 2187-0764 |
language | eng |
recordid | cdi_crossref_primary_10_1080_21870764_2020_1743416 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Taylor & Francis (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | cell culture Fish bones forsterite mechanical properties Mg-rich whitlockite |
title | Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forsterite/nano-biogenic%20hydroxyapatite%20composites%20for%20biomedical%20applications&rft.jtitle=Journal%20of%20Asian%20Ceramic%20Societies&rft.au=Naga,%20S.M.&rft.date=2020-04-02&rft.volume=8&rft.issue=2&rft.spage=373&rft.epage=386&rft.pages=373-386&rft.issn=2187-0764&rft.eissn=2187-0764&rft_id=info:doi/10.1080/21870764.2020.1743416&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c&rfr_iscdi=true |