Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications

Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg 2 SiO 4 ) addition to biogenic hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , on the phase formation, physical and mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Asian Ceramic Societies 2020-04, Vol.8 (2), p.373-386
Hauptverfasser: Naga, S.M., Hassan, A.M., Awaad, M., Killinger, A., Gadow, R., Bernstein, A., Sayed, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue 2
container_start_page 373
container_title Journal of Asian Ceramic Societies
container_volume 8
creator Naga, S.M.
Hassan, A.M.
Awaad, M.
Killinger, A.
Gadow, R.
Bernstein, A.
Sayed, M.
description Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg 2 SiO 4 ) addition to biogenic hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results.
doi_str_mv 10.1080/21870764.2020.1743416
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21870764_2020_1743416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c</doaj_id><sourcerecordid>oai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWGp_gpA_kHa_kk1uSrFaKHrR8zKZ3dQtaTbsBjT_3o2t4snTvLwz8xyeJLmlZElJSVaMlpLIQiwZYbGSggtaXCSzqc-mxeWffJ0sQjgQQqjkJZV0ljxvnA-D8XYwqw46l9XW7U1nMX0ftXefI_QwxGWK7ti7EFNIG-fTeHY02iK0KfR9G8NgXRdukqsG2mAW5zlP3jYPr-unbPfyuF3f7zIUjA-ZzgGgkFDntShkjVjRnOmSFIJgLBmjNZKybgQriobSCiputEBOSyM4MxWfJ9sTVzs4qN7bI_hRObDqu3B-r8APFlujGJYRkksoopxcSGAaKSWgG4rIK4ys_MRC70LwpvnlUaImx-rHsZocq7Pj-Hd3-rNdNHKED-dbrQYYW-cbDx3aoPj_iC-CW4Qp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Taylor &amp; Francis (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Naga, S.M. ; Hassan, A.M. ; Awaad, M. ; Killinger, A. ; Gadow, R. ; Bernstein, A. ; Sayed, M.</creator><creatorcontrib>Naga, S.M. ; Hassan, A.M. ; Awaad, M. ; Killinger, A. ; Gadow, R. ; Bernstein, A. ; Sayed, M.</creatorcontrib><description>Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg 2 SiO 4 ) addition to biogenic hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results.</description><identifier>ISSN: 2187-0764</identifier><identifier>EISSN: 2187-0764</identifier><identifier>DOI: 10.1080/21870764.2020.1743416</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>cell culture ; Fish bones ; forsterite ; mechanical properties ; Mg-rich whitlockite</subject><ispartof>Journal of Asian Ceramic Societies, 2020-04, Vol.8 (2), p.373-386</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group on behalf of The Korean Ceramic Society and The Ceramic Society of Japan. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</citedby><cites>FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/21870764.2020.1743416$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/21870764.2020.1743416$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Naga, S.M.</creatorcontrib><creatorcontrib>Hassan, A.M.</creatorcontrib><creatorcontrib>Awaad, M.</creatorcontrib><creatorcontrib>Killinger, A.</creatorcontrib><creatorcontrib>Gadow, R.</creatorcontrib><creatorcontrib>Bernstein, A.</creatorcontrib><creatorcontrib>Sayed, M.</creatorcontrib><title>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</title><title>Journal of Asian Ceramic Societies</title><description>Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg 2 SiO 4 ) addition to biogenic hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results.</description><subject>cell culture</subject><subject>Fish bones</subject><subject>forsterite</subject><subject>mechanical properties</subject><subject>Mg-rich whitlockite</subject><issn>2187-0764</issn><issn>2187-0764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1Lw0AQhoMoWGp_gpA_kHa_kk1uSrFaKHrR8zKZ3dQtaTbsBjT_3o2t4snTvLwz8xyeJLmlZElJSVaMlpLIQiwZYbGSggtaXCSzqc-mxeWffJ0sQjgQQqjkJZV0ljxvnA-D8XYwqw46l9XW7U1nMX0ftXefI_QwxGWK7ti7EFNIG-fTeHY02iK0KfR9G8NgXRdukqsG2mAW5zlP3jYPr-unbPfyuF3f7zIUjA-ZzgGgkFDntShkjVjRnOmSFIJgLBmjNZKybgQriobSCiputEBOSyM4MxWfJ9sTVzs4qN7bI_hRObDqu3B-r8APFlujGJYRkksoopxcSGAaKSWgG4rIK4ys_MRC70LwpvnlUaImx-rHsZocq7Pj-Hd3-rNdNHKED-dbrQYYW-cbDx3aoPj_iC-CW4Qp</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Naga, S.M.</creator><creator>Hassan, A.M.</creator><creator>Awaad, M.</creator><creator>Killinger, A.</creator><creator>Gadow, R.</creator><creator>Bernstein, A.</creator><creator>Sayed, M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20200402</creationdate><title>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</title><author>Naga, S.M. ; Hassan, A.M. ; Awaad, M. ; Killinger, A. ; Gadow, R. ; Bernstein, A. ; Sayed, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-d5aaa67ab5b467bcc9152d80640cab5221bc08bf4266f119a93ed4c318e432e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cell culture</topic><topic>Fish bones</topic><topic>forsterite</topic><topic>mechanical properties</topic><topic>Mg-rich whitlockite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naga, S.M.</creatorcontrib><creatorcontrib>Hassan, A.M.</creatorcontrib><creatorcontrib>Awaad, M.</creatorcontrib><creatorcontrib>Killinger, A.</creatorcontrib><creatorcontrib>Gadow, R.</creatorcontrib><creatorcontrib>Bernstein, A.</creatorcontrib><creatorcontrib>Sayed, M.</creatorcontrib><collection>Access via Taylor &amp; Francis (Open Access Collection)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Asian Ceramic Societies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naga, S.M.</au><au>Hassan, A.M.</au><au>Awaad, M.</au><au>Killinger, A.</au><au>Gadow, R.</au><au>Bernstein, A.</au><au>Sayed, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications</atitle><jtitle>Journal of Asian Ceramic Societies</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>8</volume><issue>2</issue><spage>373</spage><epage>386</epage><pages>373-386</pages><issn>2187-0764</issn><eissn>2187-0764</eissn><abstract>Recently, silicate materials have received attention as materials with promising applications in the bioceramics field. A recent study aimed to investigate the effect of forsterite (Mg 2 SiO 4 ) addition to biogenic hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , on the phase formation, physical and mechanical properties, and biocompatibility of the produced composites. Different proportions of forsterite, 10 to 40 mass%, were added to hydroxyapatite obtained from fish bones to prepare the target composites. Various techniques, such as X-ray diffraction analysis (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM), mechanical strength measurements and in vitro studies, were carried out to evaluate the composite properties. The results indicate that the addition of 20 to 40 mass% forsterite led to the transformation of forsterite into protoenstatite and the formation of Mg-rich whitlockite at the expense of hydroxyapatite. It is concluded that 20 mass% forsterite is the optimum addition amount to enhance the physical and mechanical properties of the produced composites. The cell culture tests and in vitro studies agree with the abovementioned results.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/21870764.2020.1743416</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2187-0764
ispartof Journal of Asian Ceramic Societies, 2020-04, Vol.8 (2), p.373-386
issn 2187-0764
2187-0764
language eng
recordid cdi_crossref_primary_10_1080_21870764_2020_1743416
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Taylor & Francis (Open Access Collection); Free Full-Text Journals in Chemistry
subjects cell culture
Fish bones
forsterite
mechanical properties
Mg-rich whitlockite
title Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forsterite/nano-biogenic%20hydroxyapatite%20composites%20for%20biomedical%20applications&rft.jtitle=Journal%20of%20Asian%20Ceramic%20Societies&rft.au=Naga,%20S.M.&rft.date=2020-04-02&rft.volume=8&rft.issue=2&rft.spage=373&rft.epage=386&rft.pages=373-386&rft.issn=2187-0764&rft.eissn=2187-0764&rft_id=info:doi/10.1080/21870764.2020.1743416&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2c866f57a6174547a2dc110adf1cc39c&rfr_iscdi=true