Capturing value through data-driven internal logistics: case studies on enhancing managerial capacity
A key motivation to adopt data-driven solutions in facility-internal logistic systems is to create more responsive, efficient, and sustainable systems through a seamless data flow. There is thus a need to analyse the logistics system's requirements from a data efficiency perspective. This paper...
Gespeichert in:
Veröffentlicht in: | Production & manufacturing research 2023-12, Vol.11 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Production & manufacturing research |
container_volume | 11 |
creator | Zafarzadeh, Masoud Wiktorsson, Magnus Baalsrud Hauge, Jannicke |
description | A key motivation to adopt data-driven solutions in facility-internal logistic systems is to create more responsive, efficient, and sustainable systems through a seamless data flow. There is thus a need to analyse the logistics system's requirements from a data efficiency perspective. This paper presents and demonstrates a novel method, based on established literature, to assure that a transition to data-driven internal logistics leads to improvements in operational performance objectives. First, we identify wastes on the shopfloor caused by inefficient data flows. Second, we portray the trajectories of managerial capacities enhancements, supporting decision makers toward a to-be scenario. Two case studies are presented where the method has been implemented and used for demonstration and validation purposes. The results show that the method is beneficial in a waste-elimination and continuous improvement setting, linking improvements, detected wastes, enabling technologies, and managerial capacities in terms of monitoring, control, optimization, and autonomy. |
doi_str_mv | 10.1080/21693277.2023.2214799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21693277_2023_2214799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3bd710f6bf5a4904a1f6ef49d2578d21</doaj_id><sourcerecordid>2917562745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-25e855f2da85dacf11303b077bc7e7ffecf619e1fe5e5834291c5cbe68439d543</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEElXpT0CKxDmLP-OEE9VCoVIlLsDVmtjjrJdsHGyn1f57kqYguHCyNfPMo9G8RfGakh0lDXnLaN1yptSOEcZ3jFGh2vZZcbHWq7Xx_K__y-IqpSMhhFIiKREXBe5hynP0Y1_ewzBjmQ8xzP2htJChstHf41j6MWMcYSiH0PuUvUnvSgMJy5Rn6zGVYSxxPMBoVs8JRugx-oU3MIHx-fyqeOFgSHj19F4W324-ft1_ru6-fLrdX99VRjRtrpjERkrHLDTSgnGUcsI7olRnFCrn0LiatkgdSpQNF6ylRpoO60bw1krBL4vbzWsDHPUU_QniWQfw-rEQYq8hLvsPqHlnFSWu7pwE0RIB1NXoRGuZVI1ldHFVmys94DR3_9g--O_Xj7Yf-aA5p4LyhX-z8VMMP2dMWR_DvF4t6WVPJWumhFwouVEmhpQiuj9eSvQaqP4dqF4D1U-BLnPvtzk_uhBP8BDiYHWG8xCii-vlk-b_V_wCrCqoSg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917562745</pqid></control><display><type>article</type><title>Capturing value through data-driven internal logistics: case studies on enhancing managerial capacity</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zafarzadeh, Masoud ; Wiktorsson, Magnus ; Baalsrud Hauge, Jannicke</creator><creatorcontrib>Zafarzadeh, Masoud ; Wiktorsson, Magnus ; Baalsrud Hauge, Jannicke</creatorcontrib><description>A key motivation to adopt data-driven solutions in facility-internal logistic systems is to create more responsive, efficient, and sustainable systems through a seamless data flow. There is thus a need to analyse the logistics system's requirements from a data efficiency perspective. This paper presents and demonstrates a novel method, based on established literature, to assure that a transition to data-driven internal logistics leads to improvements in operational performance objectives. First, we identify wastes on the shopfloor caused by inefficient data flows. Second, we portray the trajectories of managerial capacities enhancements, supporting decision makers toward a to-be scenario. Two case studies are presented where the method has been implemented and used for demonstration and validation purposes. The results show that the method is beneficial in a waste-elimination and continuous improvement setting, linking improvements, detected wastes, enabling technologies, and managerial capacities in terms of monitoring, control, optimization, and autonomy.</description><identifier>ISSN: 2169-3277</identifier><identifier>EISSN: 2169-3277</identifier><identifier>DOI: 10.1080/21693277.2023.2214799</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Case studies ; Industry 4.0 ; Internet of Things ; IoT ; lean ; Managerial skills ; Materials handling ; Optimization ; Process controls ; Value ; waste</subject><ispartof>Production & manufacturing research, 2023-12, Vol.11 (1)</ispartof><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2023</rights><rights>2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-25e855f2da85dacf11303b077bc7e7ffecf619e1fe5e5834291c5cbe68439d543</citedby><cites>FETCH-LOGICAL-c489t-25e855f2da85dacf11303b077bc7e7ffecf619e1fe5e5834291c5cbe68439d543</cites><orcidid>0000-0002-3747-0845 ; 0000-0001-7935-8811 ; 0000-0002-6090-7187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/21693277.2023.2214799$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/21693277.2023.2214799$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,864,885,2102,27502,27924,27925,59143,59144</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-331413$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafarzadeh, Masoud</creatorcontrib><creatorcontrib>Wiktorsson, Magnus</creatorcontrib><creatorcontrib>Baalsrud Hauge, Jannicke</creatorcontrib><title>Capturing value through data-driven internal logistics: case studies on enhancing managerial capacity</title><title>Production & manufacturing research</title><description>A key motivation to adopt data-driven solutions in facility-internal logistic systems is to create more responsive, efficient, and sustainable systems through a seamless data flow. There is thus a need to analyse the logistics system's requirements from a data efficiency perspective. This paper presents and demonstrates a novel method, based on established literature, to assure that a transition to data-driven internal logistics leads to improvements in operational performance objectives. First, we identify wastes on the shopfloor caused by inefficient data flows. Second, we portray the trajectories of managerial capacities enhancements, supporting decision makers toward a to-be scenario. Two case studies are presented where the method has been implemented and used for demonstration and validation purposes. The results show that the method is beneficial in a waste-elimination and continuous improvement setting, linking improvements, detected wastes, enabling technologies, and managerial capacities in terms of monitoring, control, optimization, and autonomy.</description><subject>Case studies</subject><subject>Industry 4.0</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>lean</subject><subject>Managerial skills</subject><subject>Materials handling</subject><subject>Optimization</subject><subject>Process controls</subject><subject>Value</subject><subject>waste</subject><issn>2169-3277</issn><issn>2169-3277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEElXpT0CKxDmLP-OEE9VCoVIlLsDVmtjjrJdsHGyn1f57kqYguHCyNfPMo9G8RfGakh0lDXnLaN1yptSOEcZ3jFGh2vZZcbHWq7Xx_K__y-IqpSMhhFIiKREXBe5hynP0Y1_ewzBjmQ8xzP2htJChstHf41j6MWMcYSiH0PuUvUnvSgMJy5Rn6zGVYSxxPMBoVs8JRugx-oU3MIHx-fyqeOFgSHj19F4W324-ft1_ru6-fLrdX99VRjRtrpjERkrHLDTSgnGUcsI7olRnFCrn0LiatkgdSpQNF6ylRpoO60bw1krBL4vbzWsDHPUU_QniWQfw-rEQYq8hLvsPqHlnFSWu7pwE0RIB1NXoRGuZVI1ldHFVmys94DR3_9g--O_Xj7Yf-aA5p4LyhX-z8VMMP2dMWR_DvF4t6WVPJWumhFwouVEmhpQiuj9eSvQaqP4dqF4D1U-BLnPvtzk_uhBP8BDiYHWG8xCii-vlk-b_V_wCrCqoSg</recordid><startdate>20231231</startdate><enddate>20231231</enddate><creator>Zafarzadeh, Masoud</creator><creator>Wiktorsson, Magnus</creator><creator>Baalsrud Hauge, Jannicke</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3747-0845</orcidid><orcidid>https://orcid.org/0000-0001-7935-8811</orcidid><orcidid>https://orcid.org/0000-0002-6090-7187</orcidid></search><sort><creationdate>20231231</creationdate><title>Capturing value through data-driven internal logistics: case studies on enhancing managerial capacity</title><author>Zafarzadeh, Masoud ; Wiktorsson, Magnus ; Baalsrud Hauge, Jannicke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-25e855f2da85dacf11303b077bc7e7ffecf619e1fe5e5834291c5cbe68439d543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Case studies</topic><topic>Industry 4.0</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>lean</topic><topic>Managerial skills</topic><topic>Materials handling</topic><topic>Optimization</topic><topic>Process controls</topic><topic>Value</topic><topic>waste</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafarzadeh, Masoud</creatorcontrib><creatorcontrib>Wiktorsson, Magnus</creatorcontrib><creatorcontrib>Baalsrud Hauge, Jannicke</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Production & manufacturing research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafarzadeh, Masoud</au><au>Wiktorsson, Magnus</au><au>Baalsrud Hauge, Jannicke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capturing value through data-driven internal logistics: case studies on enhancing managerial capacity</atitle><jtitle>Production & manufacturing research</jtitle><date>2023-12-31</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><issn>2169-3277</issn><eissn>2169-3277</eissn><abstract>A key motivation to adopt data-driven solutions in facility-internal logistic systems is to create more responsive, efficient, and sustainable systems through a seamless data flow. There is thus a need to analyse the logistics system's requirements from a data efficiency perspective. This paper presents and demonstrates a novel method, based on established literature, to assure that a transition to data-driven internal logistics leads to improvements in operational performance objectives. First, we identify wastes on the shopfloor caused by inefficient data flows. Second, we portray the trajectories of managerial capacities enhancements, supporting decision makers toward a to-be scenario. Two case studies are presented where the method has been implemented and used for demonstration and validation purposes. The results show that the method is beneficial in a waste-elimination and continuous improvement setting, linking improvements, detected wastes, enabling technologies, and managerial capacities in terms of monitoring, control, optimization, and autonomy.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/21693277.2023.2214799</doi><orcidid>https://orcid.org/0000-0002-3747-0845</orcidid><orcidid>https://orcid.org/0000-0001-7935-8811</orcidid><orcidid>https://orcid.org/0000-0002-6090-7187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3277 |
ispartof | Production & manufacturing research, 2023-12, Vol.11 (1) |
issn | 2169-3277 2169-3277 |
language | eng |
recordid | cdi_crossref_primary_10_1080_21693277_2023_2214799 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; EZB-FREE-00999 freely available EZB journals |
subjects | Case studies Industry 4.0 Internet of Things IoT lean Managerial skills Materials handling Optimization Process controls Value waste |
title | Capturing value through data-driven internal logistics: case studies on enhancing managerial capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capturing%20value%20through%20data-driven%20internal%20logistics:%20case%20studies%20on%20enhancing%20managerial%20capacity&rft.jtitle=Production%20&%20manufacturing%20research&rft.au=Zafarzadeh,%20Masoud&rft.date=2023-12-31&rft.volume=11&rft.issue=1&rft.issn=2169-3277&rft.eissn=2169-3277&rft_id=info:doi/10.1080/21693277.2023.2214799&rft_dat=%3Cproquest_cross%3E2917562745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2917562745&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3bd710f6bf5a4904a1f6ef49d2578d21&rfr_iscdi=true |