Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing

The LaSota strain of Newcastle disease virus (NDV) is a commonly used vaccine to control Newcastle disease. However, improper immunization is a common reason for vaccine failure. Hence, it is imperative to thoroughly explore innate immunity-related molecular regulatory responses to the LaSota vaccin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineered 2022-04, Vol.13 (4), p.9131-9144
Hauptverfasser: Nie, Furong, Zhang, Jingfeng, Li, Mengyun, Chang, Xuanniu, Duan, Haitao, Li, Haoyan, Zhou, Jia, Ji, Yudan, Guo, Liangxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9144
container_issue 4
container_start_page 9131
container_title Bioengineered
container_volume 13
creator Nie, Furong
Zhang, Jingfeng
Li, Mengyun
Chang, Xuanniu
Duan, Haitao
Li, Haoyan
Zhou, Jia
Ji, Yudan
Guo, Liangxing
description The LaSota strain of Newcastle disease virus (NDV) is a commonly used vaccine to control Newcastle disease. However, improper immunization is a common reason for vaccine failure. Hence, it is imperative to thoroughly explore innate immunity-related molecular regulatory responses to the LaSota vaccine. In this text, 140 long non-coding RNAs (lncRNAs), 8 microRNAs (miRNAs), and 1514 mRNAs were identified to be differentially expressed by RNA sequencing analysis in the thymic tissues of Chinese Partridge Shank chickens after LaSota vaccine inoculation. Moreover, 70 dysregulated genes related to innate immunity were identified based on GO, Reactome pathway, and InnateDB annotations and differential expression analysis. Additionally, dysregulated lncRNAs and innate immunity-related mRNAs that could interact with dysregulated miRNAs were identified based on bioinformatics prediction analysis via the miRanda software and differential expression analysis. Among these transcripts, expression patterns of five lncRNAs, seven miRNAs, and six mRNAs were further examined by RT-qPCR assay. Both RNA-seq and RT-qPCR outcomes showed that 10 transcripts (MSTRG.22689.1, ENSGALT00000065826, ENSGALT00000059336, ENSGALT00000060887, gga-miR-6575-5p, gga-miR-6631-5p, gga-miR-1727, paraoxonase 2 (PON2), mitogen-activated protein kinase 10, and cystic fibrosis transmembrane conductance regulator (CFTR) were highly expressed, and 4 transcripts (MSTRG.188121.10, gga-miR-6655-5p, gga-miR-6548-3p, and matrix metallopeptidase 9 (MMP9) were low expressed after NDV infection. Additionally, two potential competing endogenous RNA networks (ENSGALT00000060887/gga-miR-6575-5p/PON2 or MSTRG.188121.10/gga-miR-6631-5p/MMP9) and some co-expression axes (ENSGALT00000065826/gga-miR-6631-5p, MSTRG.188121.10/gga-miR-6575-5p, MSTRG.188121.10/CFTR, ENSGALT00000060887/MMP9) were identified based on RT-qPCR and co-expression analyses. In conclusion, we identified multiple dysregulated lncRNAs, miRNAs, and mRNAs after LaSota infection and some potential regulatory networks for these dysregulated transcripts.
doi_str_mv 10.1080/21655979.2021.2008737
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21655979_2021_2008737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649250612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-b8a14abd9a09930be3fcf54f7fcf13cdc72775771520c765f90462c7b9d067023</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRCIVqWfAPKSzRQ7ieN4g6hG5SGNCqJlbd04TuI2sQdfZ0bzW3whHmY6gg0bH-ve87jSybLXjF4xWtN3Oas4l0Je5TRn6aG1KMSz7Hw_X3BZi-env5Bn2SXiA6WU0aLkon6ZnRW8pAUX7Dz7dR_AoQ52Hf1kCDgYd2iR-I7EYTdZTaJFnA2SLviJLAfrDBryDUIMtu0NuRvAPRI9WP1oHJKtjQPx4Q_6OZJbs9WAcTSktWggSTc2zEhWcOcjkA1onRyJdQ9GR-tdWgMZbD8s4hD83A_rZPL99pqg-Tkbl8j9q-xFByOayyNeZD8-3twvPy9WXz99WV6vFrqQdVw0NbASmlYClbKgjSk63fGyEwlYoVstciG4EIznVIuKd5KWVa5FI1taCZoXF9n7g-96bibTauNigFGtg50g7JQHq_7dODuo3m-UZBWTjCWDt0eD4NPxGNVkUZtxBGf8jCqvSplzWrF9Fj9QdfCIwXSnGEbVvnL1VLnaV66OlSfdm79vPKmeCk6EDweCdZ0PE2x9GFsVYTf60KXqtUVV_D_jN2SgwLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2649250612</pqid></control><display><type>article</type><title>Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Nie, Furong ; Zhang, Jingfeng ; Li, Mengyun ; Chang, Xuanniu ; Duan, Haitao ; Li, Haoyan ; Zhou, Jia ; Ji, Yudan ; Guo, Liangxing</creator><creatorcontrib>Nie, Furong ; Zhang, Jingfeng ; Li, Mengyun ; Chang, Xuanniu ; Duan, Haitao ; Li, Haoyan ; Zhou, Jia ; Ji, Yudan ; Guo, Liangxing</creatorcontrib><description>The LaSota strain of Newcastle disease virus (NDV) is a commonly used vaccine to control Newcastle disease. However, improper immunization is a common reason for vaccine failure. Hence, it is imperative to thoroughly explore innate immunity-related molecular regulatory responses to the LaSota vaccine. In this text, 140 long non-coding RNAs (lncRNAs), 8 microRNAs (miRNAs), and 1514 mRNAs were identified to be differentially expressed by RNA sequencing analysis in the thymic tissues of Chinese Partridge Shank chickens after LaSota vaccine inoculation. Moreover, 70 dysregulated genes related to innate immunity were identified based on GO, Reactome pathway, and InnateDB annotations and differential expression analysis. Additionally, dysregulated lncRNAs and innate immunity-related mRNAs that could interact with dysregulated miRNAs were identified based on bioinformatics prediction analysis via the miRanda software and differential expression analysis. Among these transcripts, expression patterns of five lncRNAs, seven miRNAs, and six mRNAs were further examined by RT-qPCR assay. Both RNA-seq and RT-qPCR outcomes showed that 10 transcripts (MSTRG.22689.1, ENSGALT00000065826, ENSGALT00000059336, ENSGALT00000060887, gga-miR-6575-5p, gga-miR-6631-5p, gga-miR-1727, paraoxonase 2 (PON2), mitogen-activated protein kinase 10, and cystic fibrosis transmembrane conductance regulator (CFTR) were highly expressed, and 4 transcripts (MSTRG.188121.10, gga-miR-6655-5p, gga-miR-6548-3p, and matrix metallopeptidase 9 (MMP9) were low expressed after NDV infection. Additionally, two potential competing endogenous RNA networks (ENSGALT00000060887/gga-miR-6575-5p/PON2 or MSTRG.188121.10/gga-miR-6631-5p/MMP9) and some co-expression axes (ENSGALT00000065826/gga-miR-6631-5p, MSTRG.188121.10/gga-miR-6575-5p, MSTRG.188121.10/CFTR, ENSGALT00000060887/MMP9) were identified based on RT-qPCR and co-expression analyses. In conclusion, we identified multiple dysregulated lncRNAs, miRNAs, and mRNAs after LaSota infection and some potential regulatory networks for these dysregulated transcripts.</description><identifier>ISSN: 2165-5979</identifier><identifier>EISSN: 2165-5987</identifier><identifier>DOI: 10.1080/21655979.2021.2008737</identifier><identifier>PMID: 35403571</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Chickens - genetics ; Chickens - metabolism ; China ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Gene Expression Profiling ; High-Throughput Nucleotide Sequencing ; innate immune ; LaSota ; lncRNA ; Matrix Metalloproteinase 9 - genetics ; microRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; mRNA ; Newcastle disease ; Newcastle disease virus ; Newcastle disease virus - genetics ; Newcastle disease virus - metabolism ; Research Paper ; RNA sequencing ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transcriptome - genetics ; Vaccines - metabolism</subject><ispartof>Bioengineered, 2022-04, Vol.13 (4), p.9131-9144</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-b8a14abd9a09930be3fcf54f7fcf13cdc72775771520c765f90462c7b9d067023</citedby><cites>FETCH-LOGICAL-c398t-b8a14abd9a09930be3fcf54f7fcf13cdc72775771520c765f90462c7b9d067023</cites><orcidid>0000-0003-2672-4253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161911/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161911/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27500,27922,27923,53789,53791,59141,59142</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35403571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Furong</creatorcontrib><creatorcontrib>Zhang, Jingfeng</creatorcontrib><creatorcontrib>Li, Mengyun</creatorcontrib><creatorcontrib>Chang, Xuanniu</creatorcontrib><creatorcontrib>Duan, Haitao</creatorcontrib><creatorcontrib>Li, Haoyan</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Ji, Yudan</creatorcontrib><creatorcontrib>Guo, Liangxing</creatorcontrib><title>Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing</title><title>Bioengineered</title><addtitle>Bioengineered</addtitle><description>The LaSota strain of Newcastle disease virus (NDV) is a commonly used vaccine to control Newcastle disease. However, improper immunization is a common reason for vaccine failure. Hence, it is imperative to thoroughly explore innate immunity-related molecular regulatory responses to the LaSota vaccine. In this text, 140 long non-coding RNAs (lncRNAs), 8 microRNAs (miRNAs), and 1514 mRNAs were identified to be differentially expressed by RNA sequencing analysis in the thymic tissues of Chinese Partridge Shank chickens after LaSota vaccine inoculation. Moreover, 70 dysregulated genes related to innate immunity were identified based on GO, Reactome pathway, and InnateDB annotations and differential expression analysis. Additionally, dysregulated lncRNAs and innate immunity-related mRNAs that could interact with dysregulated miRNAs were identified based on bioinformatics prediction analysis via the miRanda software and differential expression analysis. Among these transcripts, expression patterns of five lncRNAs, seven miRNAs, and six mRNAs were further examined by RT-qPCR assay. Both RNA-seq and RT-qPCR outcomes showed that 10 transcripts (MSTRG.22689.1, ENSGALT00000065826, ENSGALT00000059336, ENSGALT00000060887, gga-miR-6575-5p, gga-miR-6631-5p, gga-miR-1727, paraoxonase 2 (PON2), mitogen-activated protein kinase 10, and cystic fibrosis transmembrane conductance regulator (CFTR) were highly expressed, and 4 transcripts (MSTRG.188121.10, gga-miR-6655-5p, gga-miR-6548-3p, and matrix metallopeptidase 9 (MMP9) were low expressed after NDV infection. Additionally, two potential competing endogenous RNA networks (ENSGALT00000060887/gga-miR-6575-5p/PON2 or MSTRG.188121.10/gga-miR-6631-5p/MMP9) and some co-expression axes (ENSGALT00000065826/gga-miR-6631-5p, MSTRG.188121.10/gga-miR-6575-5p, MSTRG.188121.10/CFTR, ENSGALT00000060887/MMP9) were identified based on RT-qPCR and co-expression analyses. In conclusion, we identified multiple dysregulated lncRNAs, miRNAs, and mRNAs after LaSota infection and some potential regulatory networks for these dysregulated transcripts.</description><subject>Animals</subject><subject>Chickens - genetics</subject><subject>Chickens - metabolism</subject><subject>China</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Gene Expression Profiling</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>innate immune</subject><subject>LaSota</subject><subject>lncRNA</subject><subject>Matrix Metalloproteinase 9 - genetics</subject><subject>microRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>mRNA</subject><subject>Newcastle disease</subject><subject>Newcastle disease virus</subject><subject>Newcastle disease virus - genetics</subject><subject>Newcastle disease virus - metabolism</subject><subject>Research Paper</subject><subject>RNA sequencing</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcriptome - genetics</subject><subject>Vaccines - metabolism</subject><issn>2165-5979</issn><issn>2165-5987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9Uctu1DAUjRCIVqWfAPKSzRQ7ieN4g6hG5SGNCqJlbd04TuI2sQdfZ0bzW3whHmY6gg0bH-ve87jSybLXjF4xWtN3Oas4l0Je5TRn6aG1KMSz7Hw_X3BZi-env5Bn2SXiA6WU0aLkon6ZnRW8pAUX7Dz7dR_AoQ52Hf1kCDgYd2iR-I7EYTdZTaJFnA2SLviJLAfrDBryDUIMtu0NuRvAPRI9WP1oHJKtjQPx4Q_6OZJbs9WAcTSktWggSTc2zEhWcOcjkA1onRyJdQ9GR-tdWgMZbD8s4hD83A_rZPL99pqg-Tkbl8j9q-xFByOayyNeZD8-3twvPy9WXz99WV6vFrqQdVw0NbASmlYClbKgjSk63fGyEwlYoVstciG4EIznVIuKd5KWVa5FI1taCZoXF9n7g-96bibTauNigFGtg50g7JQHq_7dODuo3m-UZBWTjCWDt0eD4NPxGNVkUZtxBGf8jCqvSplzWrF9Fj9QdfCIwXSnGEbVvnL1VLnaV66OlSfdm79vPKmeCk6EDweCdZ0PE2x9GFsVYTf60KXqtUVV_D_jN2SgwLw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Nie, Furong</creator><creator>Zhang, Jingfeng</creator><creator>Li, Mengyun</creator><creator>Chang, Xuanniu</creator><creator>Duan, Haitao</creator><creator>Li, Haoyan</creator><creator>Zhou, Jia</creator><creator>Ji, Yudan</creator><creator>Guo, Liangxing</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2672-4253</orcidid></search><sort><creationdate>20220401</creationdate><title>Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing</title><author>Nie, Furong ; Zhang, Jingfeng ; Li, Mengyun ; Chang, Xuanniu ; Duan, Haitao ; Li, Haoyan ; Zhou, Jia ; Ji, Yudan ; Guo, Liangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-b8a14abd9a09930be3fcf54f7fcf13cdc72775771520c765f90462c7b9d067023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Chickens - genetics</topic><topic>Chickens - metabolism</topic><topic>China</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Gene Expression Profiling</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>innate immune</topic><topic>LaSota</topic><topic>lncRNA</topic><topic>Matrix Metalloproteinase 9 - genetics</topic><topic>microRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>mRNA</topic><topic>Newcastle disease</topic><topic>Newcastle disease virus</topic><topic>Newcastle disease virus - genetics</topic><topic>Newcastle disease virus - metabolism</topic><topic>Research Paper</topic><topic>RNA sequencing</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcriptome - genetics</topic><topic>Vaccines - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Furong</creatorcontrib><creatorcontrib>Zhang, Jingfeng</creatorcontrib><creatorcontrib>Li, Mengyun</creatorcontrib><creatorcontrib>Chang, Xuanniu</creatorcontrib><creatorcontrib>Duan, Haitao</creatorcontrib><creatorcontrib>Li, Haoyan</creatorcontrib><creatorcontrib>Zhou, Jia</creatorcontrib><creatorcontrib>Ji, Yudan</creatorcontrib><creatorcontrib>Guo, Liangxing</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioengineered</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Furong</au><au>Zhang, Jingfeng</au><au>Li, Mengyun</au><au>Chang, Xuanniu</au><au>Duan, Haitao</au><au>Li, Haoyan</au><au>Zhou, Jia</au><au>Ji, Yudan</au><au>Guo, Liangxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing</atitle><jtitle>Bioengineered</jtitle><addtitle>Bioengineered</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>13</volume><issue>4</issue><spage>9131</spage><epage>9144</epage><pages>9131-9144</pages><issn>2165-5979</issn><eissn>2165-5987</eissn><abstract>The LaSota strain of Newcastle disease virus (NDV) is a commonly used vaccine to control Newcastle disease. However, improper immunization is a common reason for vaccine failure. Hence, it is imperative to thoroughly explore innate immunity-related molecular regulatory responses to the LaSota vaccine. In this text, 140 long non-coding RNAs (lncRNAs), 8 microRNAs (miRNAs), and 1514 mRNAs were identified to be differentially expressed by RNA sequencing analysis in the thymic tissues of Chinese Partridge Shank chickens after LaSota vaccine inoculation. Moreover, 70 dysregulated genes related to innate immunity were identified based on GO, Reactome pathway, and InnateDB annotations and differential expression analysis. Additionally, dysregulated lncRNAs and innate immunity-related mRNAs that could interact with dysregulated miRNAs were identified based on bioinformatics prediction analysis via the miRanda software and differential expression analysis. Among these transcripts, expression patterns of five lncRNAs, seven miRNAs, and six mRNAs were further examined by RT-qPCR assay. Both RNA-seq and RT-qPCR outcomes showed that 10 transcripts (MSTRG.22689.1, ENSGALT00000065826, ENSGALT00000059336, ENSGALT00000060887, gga-miR-6575-5p, gga-miR-6631-5p, gga-miR-1727, paraoxonase 2 (PON2), mitogen-activated protein kinase 10, and cystic fibrosis transmembrane conductance regulator (CFTR) were highly expressed, and 4 transcripts (MSTRG.188121.10, gga-miR-6655-5p, gga-miR-6548-3p, and matrix metallopeptidase 9 (MMP9) were low expressed after NDV infection. Additionally, two potential competing endogenous RNA networks (ENSGALT00000060887/gga-miR-6575-5p/PON2 or MSTRG.188121.10/gga-miR-6631-5p/MMP9) and some co-expression axes (ENSGALT00000065826/gga-miR-6631-5p, MSTRG.188121.10/gga-miR-6575-5p, MSTRG.188121.10/CFTR, ENSGALT00000060887/MMP9) were identified based on RT-qPCR and co-expression analyses. In conclusion, we identified multiple dysregulated lncRNAs, miRNAs, and mRNAs after LaSota infection and some potential regulatory networks for these dysregulated transcripts.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>35403571</pmid><doi>10.1080/21655979.2021.2008737</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2672-4253</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2165-5979
ispartof Bioengineered, 2022-04, Vol.13 (4), p.9131-9144
issn 2165-5979
2165-5987
language eng
recordid cdi_crossref_primary_10_1080_21655979_2021_2008737
source Taylor & Francis Open Access; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Chickens - genetics
Chickens - metabolism
China
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Gene Expression Profiling
High-Throughput Nucleotide Sequencing
innate immune
LaSota
lncRNA
Matrix Metalloproteinase 9 - genetics
microRNA
MicroRNAs - genetics
MicroRNAs - metabolism
mRNA
Newcastle disease
Newcastle disease virus
Newcastle disease virus - genetics
Newcastle disease virus - metabolism
Research Paper
RNA sequencing
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transcriptome - genetics
Vaccines - metabolism
title Transcriptome analysis of thymic tissues from Chinese Partridge Shank chickens with or without Newcastle disease virus LaSota vaccine injection via high-throughput RNA sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20of%20thymic%20tissues%20from%20Chinese%20Partridge%20Shank%20chickens%20with%20or%20without%20Newcastle%20disease%20virus%20LaSota%20vaccine%20injection%20via%20high-throughput%20RNA%20sequencing&rft.jtitle=Bioengineered&rft.au=Nie,%20Furong&rft.date=2022-04-01&rft.volume=13&rft.issue=4&rft.spage=9131&rft.epage=9144&rft.pages=9131-9144&rft.issn=2165-5979&rft.eissn=2165-5987&rft_id=info:doi/10.1080/21655979.2021.2008737&rft_dat=%3Cproquest_cross%3E2649250612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2649250612&rft_id=info:pmid/35403571&rfr_iscdi=true