Biological hydrogen methanation systems - an overview of design and efficiency
The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethan...
Gespeichert in:
Veröffentlicht in: | Bioengineered 2019-01, Vol.10 (1), p.604-634 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 1 |
container_start_page | 604 |
container_title | Bioengineered |
container_volume | 10 |
creator | Rusmanis, Davis O'Shea, Richard Wall, David M. Murphy, Jerry D. |
description | The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H
2
+ CO
2
= CH
4
+ 2H
2
), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified. |
doi_str_mv | 10.1080/21655979.2019.1684607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21655979_2019_1684607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311923031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhaMK1FalPwHkI5csduzY8QUBFS1IVbnA2ZrY412jxC52dqv8e7La7QouPXn0_M2b0byqesvoitGOfmiYbFut9KqhTK-Y7ISk6qy63Ot1qzv16lQrfVFdl_KbUsooF63qzqsLzqTSQrLL6uFLSENaBwsD2cwupzVGMuK0gQhTSJGUuUw4FlITiCTtMO8CPpHkicMS1nFRHUHvgw0Y7fymeu1hKHh9fK-qX7dff958q-9_3H2_-XxfWyG7qXaWud63HAChty32CqyU2nVLuYi94KipaijvpXc9E9YL5OAARG-1R8Wvqo8H38dtP6KzGKcMg3nMYYQ8mwTB_P8Tw8as084spxKC7w3eHw1y-rPFMpkxFIvDABHTtpiGM6YbTjlb0PaA2pxKyehPYxg1-zjMcxxmH4c5xrH0vft3x1PX8_EX4NMBCNGnPMJTyoMzE8xDyj5DtKEs8Isz_gJOxZ09</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311923031</pqid></control><display><type>article</type><title>Biological hydrogen methanation systems - an overview of design and efficiency</title><source>Taylor & Francis Open Access</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rusmanis, Davis ; O'Shea, Richard ; Wall, David M. ; Murphy, Jerry D.</creator><creatorcontrib>Rusmanis, Davis ; O'Shea, Richard ; Wall, David M. ; Murphy, Jerry D.</creatorcontrib><description>The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H
2
+ CO
2
= CH
4
+ 2H
2
), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.</description><identifier>ISSN: 2165-5979</identifier><identifier>ISSN: 2165-5987</identifier><identifier>EISSN: 2165-5987</identifier><identifier>DOI: 10.1080/21655979.2019.1684607</identifier><identifier>PMID: 31679461</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Biofuels - analysis ; Biological methanation ; biomethane ; Bioreactors - microbiology ; Biotechnology ; Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; gas-liquid mass transfer coefficient ; hydrogen ; Hydrogen - chemistry ; Hydrogen - metabolism ; hydrogenotrophic archaea ; methane ; Methane - chemistry ; Methane - metabolism ; power to gas ; Renewable Energy ; Review</subject><ispartof>Bioengineered, 2019-01, Vol.10 (1), p.604-634</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2019 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</citedby><cites>FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</cites><orcidid>0000-0002-2718-5071 ; 0000-0003-2120-1357 ; 0000-0001-5802-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27483,27905,27906,53772,53774,59122,59123</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31679461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rusmanis, Davis</creatorcontrib><creatorcontrib>O'Shea, Richard</creatorcontrib><creatorcontrib>Wall, David M.</creatorcontrib><creatorcontrib>Murphy, Jerry D.</creatorcontrib><title>Biological hydrogen methanation systems - an overview of design and efficiency</title><title>Bioengineered</title><addtitle>Bioengineered</addtitle><description>The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H
2
+ CO
2
= CH
4
+ 2H
2
), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.</description><subject>Biofuels - analysis</subject><subject>Biological methanation</subject><subject>biomethane</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>gas-liquid mass transfer coefficient</subject><subject>hydrogen</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>hydrogenotrophic archaea</subject><subject>methane</subject><subject>Methane - chemistry</subject><subject>Methane - metabolism</subject><subject>power to gas</subject><subject>Renewable Energy</subject><subject>Review</subject><issn>2165-5979</issn><issn>2165-5987</issn><issn>2165-5987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhaMK1FalPwHkI5csduzY8QUBFS1IVbnA2ZrY412jxC52dqv8e7La7QouPXn0_M2b0byqesvoitGOfmiYbFut9KqhTK-Y7ISk6qy63Ot1qzv16lQrfVFdl_KbUsooF63qzqsLzqTSQrLL6uFLSENaBwsD2cwupzVGMuK0gQhTSJGUuUw4FlITiCTtMO8CPpHkicMS1nFRHUHvgw0Y7fymeu1hKHh9fK-qX7dff958q-9_3H2_-XxfWyG7qXaWud63HAChty32CqyU2nVLuYi94KipaijvpXc9E9YL5OAARG-1R8Wvqo8H38dtP6KzGKcMg3nMYYQ8mwTB_P8Tw8as084spxKC7w3eHw1y-rPFMpkxFIvDABHTtpiGM6YbTjlb0PaA2pxKyehPYxg1-zjMcxxmH4c5xrH0vft3x1PX8_EX4NMBCNGnPMJTyoMzE8xDyj5DtKEs8Isz_gJOxZ09</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Rusmanis, Davis</creator><creator>O'Shea, Richard</creator><creator>Wall, David M.</creator><creator>Murphy, Jerry D.</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2718-5071</orcidid><orcidid>https://orcid.org/0000-0003-2120-1357</orcidid><orcidid>https://orcid.org/0000-0001-5802-2884</orcidid></search><sort><creationdate>20190101</creationdate><title>Biological hydrogen methanation systems - an overview of design and efficiency</title><author>Rusmanis, Davis ; O'Shea, Richard ; Wall, David M. ; Murphy, Jerry D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biofuels - analysis</topic><topic>Biological methanation</topic><topic>biomethane</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>gas-liquid mass transfer coefficient</topic><topic>hydrogen</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>hydrogenotrophic archaea</topic><topic>methane</topic><topic>Methane - chemistry</topic><topic>Methane - metabolism</topic><topic>power to gas</topic><topic>Renewable Energy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusmanis, Davis</creatorcontrib><creatorcontrib>O'Shea, Richard</creatorcontrib><creatorcontrib>Wall, David M.</creatorcontrib><creatorcontrib>Murphy, Jerry D.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioengineered</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusmanis, Davis</au><au>O'Shea, Richard</au><au>Wall, David M.</au><au>Murphy, Jerry D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological hydrogen methanation systems - an overview of design and efficiency</atitle><jtitle>Bioengineered</jtitle><addtitle>Bioengineered</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>604</spage><epage>634</epage><pages>604-634</pages><issn>2165-5979</issn><issn>2165-5987</issn><eissn>2165-5987</eissn><abstract>The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H
2
+ CO
2
= CH
4
+ 2H
2
), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>31679461</pmid><doi>10.1080/21655979.2019.1684607</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2718-5071</orcidid><orcidid>https://orcid.org/0000-0003-2120-1357</orcidid><orcidid>https://orcid.org/0000-0001-5802-2884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2165-5979 |
ispartof | Bioengineered, 2019-01, Vol.10 (1), p.604-634 |
issn | 2165-5979 2165-5987 2165-5987 |
language | eng |
recordid | cdi_crossref_primary_10_1080_21655979_2019_1684607 |
source | Taylor & Francis Open Access; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biofuels - analysis Biological methanation biomethane Bioreactors - microbiology Biotechnology Carbon Dioxide - chemistry Carbon Dioxide - metabolism gas-liquid mass transfer coefficient hydrogen Hydrogen - chemistry Hydrogen - metabolism hydrogenotrophic archaea methane Methane - chemistry Methane - metabolism power to gas Renewable Energy Review |
title | Biological hydrogen methanation systems - an overview of design and efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20hydrogen%20methanation%20systems%20-%20an%20overview%20of%20design%20and%20efficiency&rft.jtitle=Bioengineered&rft.au=Rusmanis,%20Davis&rft.date=2019-01-01&rft.volume=10&rft.issue=1&rft.spage=604&rft.epage=634&rft.pages=604-634&rft.issn=2165-5979&rft.eissn=2165-5987&rft_id=info:doi/10.1080/21655979.2019.1684607&rft_dat=%3Cproquest_cross%3E2311923031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311923031&rft_id=info:pmid/31679461&rfr_iscdi=true |