Biological hydrogen methanation systems - an overview of design and efficiency

The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineered 2019-01, Vol.10 (1), p.604-634
Hauptverfasser: Rusmanis, Davis, O'Shea, Richard, Wall, David M., Murphy, Jerry D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 1
container_start_page 604
container_title Bioengineered
container_volume 10
creator Rusmanis, Davis
O'Shea, Richard
Wall, David M.
Murphy, Jerry D.
description The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H 2 + CO 2 = CH 4 + 2H 2 ), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.
doi_str_mv 10.1080/21655979.2019.1684607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21655979_2019_1684607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311923031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhaMK1FalPwHkI5csduzY8QUBFS1IVbnA2ZrY412jxC52dqv8e7La7QouPXn0_M2b0byqesvoitGOfmiYbFut9KqhTK-Y7ISk6qy63Ot1qzv16lQrfVFdl_KbUsooF63qzqsLzqTSQrLL6uFLSENaBwsD2cwupzVGMuK0gQhTSJGUuUw4FlITiCTtMO8CPpHkicMS1nFRHUHvgw0Y7fymeu1hKHh9fK-qX7dff958q-9_3H2_-XxfWyG7qXaWud63HAChty32CqyU2nVLuYi94KipaijvpXc9E9YL5OAARG-1R8Wvqo8H38dtP6KzGKcMg3nMYYQ8mwTB_P8Tw8as084spxKC7w3eHw1y-rPFMpkxFIvDABHTtpiGM6YbTjlb0PaA2pxKyehPYxg1-zjMcxxmH4c5xrH0vft3x1PX8_EX4NMBCNGnPMJTyoMzE8xDyj5DtKEs8Isz_gJOxZ09</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311923031</pqid></control><display><type>article</type><title>Biological hydrogen methanation systems - an overview of design and efficiency</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Rusmanis, Davis ; O'Shea, Richard ; Wall, David M. ; Murphy, Jerry D.</creator><creatorcontrib>Rusmanis, Davis ; O'Shea, Richard ; Wall, David M. ; Murphy, Jerry D.</creatorcontrib><description>The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H 2 + CO 2 = CH 4 + 2H 2 ), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.</description><identifier>ISSN: 2165-5979</identifier><identifier>ISSN: 2165-5987</identifier><identifier>EISSN: 2165-5987</identifier><identifier>DOI: 10.1080/21655979.2019.1684607</identifier><identifier>PMID: 31679461</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Biofuels - analysis ; Biological methanation ; biomethane ; Bioreactors - microbiology ; Biotechnology ; Carbon Dioxide - chemistry ; Carbon Dioxide - metabolism ; gas-liquid mass transfer coefficient ; hydrogen ; Hydrogen - chemistry ; Hydrogen - metabolism ; hydrogenotrophic archaea ; methane ; Methane - chemistry ; Methane - metabolism ; power to gas ; Renewable Energy ; Review</subject><ispartof>Bioengineered, 2019-01, Vol.10 (1), p.604-634</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2019 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</citedby><cites>FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</cites><orcidid>0000-0002-2718-5071 ; 0000-0003-2120-1357 ; 0000-0001-5802-2884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844437/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844437/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27483,27905,27906,53772,53774,59122,59123</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31679461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rusmanis, Davis</creatorcontrib><creatorcontrib>O'Shea, Richard</creatorcontrib><creatorcontrib>Wall, David M.</creatorcontrib><creatorcontrib>Murphy, Jerry D.</creatorcontrib><title>Biological hydrogen methanation systems - an overview of design and efficiency</title><title>Bioengineered</title><addtitle>Bioengineered</addtitle><description>The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H 2 + CO 2 = CH 4 + 2H 2 ), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.</description><subject>Biofuels - analysis</subject><subject>Biological methanation</subject><subject>biomethane</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - metabolism</subject><subject>gas-liquid mass transfer coefficient</subject><subject>hydrogen</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>hydrogenotrophic archaea</subject><subject>methane</subject><subject>Methane - chemistry</subject><subject>Methane - metabolism</subject><subject>power to gas</subject><subject>Renewable Energy</subject><subject>Review</subject><issn>2165-5979</issn><issn>2165-5987</issn><issn>2165-5987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhaMK1FalPwHkI5csduzY8QUBFS1IVbnA2ZrY412jxC52dqv8e7La7QouPXn0_M2b0byqesvoitGOfmiYbFut9KqhTK-Y7ISk6qy63Ot1qzv16lQrfVFdl_KbUsooF63qzqsLzqTSQrLL6uFLSENaBwsD2cwupzVGMuK0gQhTSJGUuUw4FlITiCTtMO8CPpHkicMS1nFRHUHvgw0Y7fymeu1hKHh9fK-qX7dff958q-9_3H2_-XxfWyG7qXaWud63HAChty32CqyU2nVLuYi94KipaijvpXc9E9YL5OAARG-1R8Wvqo8H38dtP6KzGKcMg3nMYYQ8mwTB_P8Tw8as084spxKC7w3eHw1y-rPFMpkxFIvDABHTtpiGM6YbTjlb0PaA2pxKyehPYxg1-zjMcxxmH4c5xrH0vft3x1PX8_EX4NMBCNGnPMJTyoMzE8xDyj5DtKEs8Isz_gJOxZ09</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Rusmanis, Davis</creator><creator>O'Shea, Richard</creator><creator>Wall, David M.</creator><creator>Murphy, Jerry D.</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2718-5071</orcidid><orcidid>https://orcid.org/0000-0003-2120-1357</orcidid><orcidid>https://orcid.org/0000-0001-5802-2884</orcidid></search><sort><creationdate>20190101</creationdate><title>Biological hydrogen methanation systems - an overview of design and efficiency</title><author>Rusmanis, Davis ; O'Shea, Richard ; Wall, David M. ; Murphy, Jerry D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-dc1dbf53aaeabc5eb7ac669d85eb3aab43e907203b6fdb14cf4e3adaa4bc9fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biofuels - analysis</topic><topic>Biological methanation</topic><topic>biomethane</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - metabolism</topic><topic>gas-liquid mass transfer coefficient</topic><topic>hydrogen</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>hydrogenotrophic archaea</topic><topic>methane</topic><topic>Methane - chemistry</topic><topic>Methane - metabolism</topic><topic>power to gas</topic><topic>Renewable Energy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusmanis, Davis</creatorcontrib><creatorcontrib>O'Shea, Richard</creatorcontrib><creatorcontrib>Wall, David M.</creatorcontrib><creatorcontrib>Murphy, Jerry D.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioengineered</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusmanis, Davis</au><au>O'Shea, Richard</au><au>Wall, David M.</au><au>Murphy, Jerry D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological hydrogen methanation systems - an overview of design and efficiency</atitle><jtitle>Bioengineered</jtitle><addtitle>Bioengineered</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>604</spage><epage>634</epage><pages>604-634</pages><issn>2165-5979</issn><issn>2165-5987</issn><eissn>2165-5987</eissn><abstract>The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H 2 + CO 2 = CH 4 + 2H 2 ), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>31679461</pmid><doi>10.1080/21655979.2019.1684607</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2718-5071</orcidid><orcidid>https://orcid.org/0000-0003-2120-1357</orcidid><orcidid>https://orcid.org/0000-0001-5802-2884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2165-5979
ispartof Bioengineered, 2019-01, Vol.10 (1), p.604-634
issn 2165-5979
2165-5987
2165-5987
language eng
recordid cdi_crossref_primary_10_1080_21655979_2019_1684607
source Taylor & Francis Open Access; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biofuels - analysis
Biological methanation
biomethane
Bioreactors - microbiology
Biotechnology
Carbon Dioxide - chemistry
Carbon Dioxide - metabolism
gas-liquid mass transfer coefficient
hydrogen
Hydrogen - chemistry
Hydrogen - metabolism
hydrogenotrophic archaea
methane
Methane - chemistry
Methane - metabolism
power to gas
Renewable Energy
Review
title Biological hydrogen methanation systems - an overview of design and efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20hydrogen%20methanation%20systems%20-%20an%20overview%20of%20design%20and%20efficiency&rft.jtitle=Bioengineered&rft.au=Rusmanis,%20Davis&rft.date=2019-01-01&rft.volume=10&rft.issue=1&rft.spage=604&rft.epage=634&rft.pages=604-634&rft.issn=2165-5979&rft.eissn=2165-5987&rft_id=info:doi/10.1080/21655979.2019.1684607&rft_dat=%3Cproquest_cross%3E2311923031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311923031&rft_id=info:pmid/31679461&rfr_iscdi=true