T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response
The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, w...
Gespeichert in:
Veröffentlicht in: | Human vaccines & immunotherapeutics 2018-09, Vol.14 (9), p.2203-2207 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2207 |
---|---|
container_issue | 9 |
container_start_page | 2203 |
container_title | Human vaccines & immunotherapeutics |
container_volume | 14 |
creator | Moise, Leonard M. Biron, Bethany Boyle, Christine M. Kurt Yilmaz, Nese Jang, Hyesun Schiffer, Celia M. Ross, Ted Martin, William D. De Groot, Anne S. |
description | The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4
+
T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4
+
T cell memory to influenza immunity, (ii) the essential role CD4
+
T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4
+
T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets. |
doi_str_mv | 10.1080/21645515.2018.1495303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21645515_2018_1495303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_854fbb36eaa049ba956ce8e78a7b5551</doaj_id><sourcerecordid>2071567222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpTwD5yGW3duKPhAMCVdBWquBSJG7W2BkHl6wd7OxWy6_Hy25X9IIP9mj8zjP2vFX1mtEloy29qJnkQjCxrClrl4x3oqHNs-p0l18Iwb8_P8ZMnFTnOd_TshStuZQvq5OGUiaErE-rn3fE4jgSnPwcJyQYBh8Qkw_DOwKBwMaX_Vp96YgPblxj-A1kA9YWFclzghmHLXExkQlCjytvyZRwgoR9wJwLoicJ8xRDxlfVCwdjxvPDeVZ9-_zp7vJ6cfv16uby4-3CiobPC4sKQHDgaKU10rAWHFetkhIMWNMBry23rWgsgxp64xoQDJyTjinbGmjOqps9t49wr6fkV5C2OoLXfxMxDRrS7O2IuhXcGdNIBKC8M9AJabFF1YIyogyvsN7vWdParLC3GMqfxyfQpzfB_9BD3GjJ2oZ1qgDeHgAp_lpjnvXK593IIWBcZ11TxYRUdV0XqdhLbYo5J3THNozqne_60Xe9810ffC91b_5947Hq0eUi-LAXFAtjWsFDTGOvZ9iOMbkEwfqsm__3-ANgnL-9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071567222</pqid></control><display><type>article</type><title>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moise, Leonard ; M. Biron, Bethany ; Boyle, Christine M. ; Kurt Yilmaz, Nese ; Jang, Hyesun ; Schiffer, Celia ; M. Ross, Ted ; Martin, William D. ; De Groot, Anne S.</creator><creatorcontrib>Moise, Leonard ; M. Biron, Bethany ; Boyle, Christine M. ; Kurt Yilmaz, Nese ; Jang, Hyesun ; Schiffer, Celia ; M. Ross, Ted ; Martin, William D. ; De Groot, Anne S.</creatorcontrib><description>The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4
+
T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4
+
T cell memory to influenza immunity, (ii) the essential role CD4
+
T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4
+
T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</description><identifier>ISSN: 2164-5515</identifier><identifier>EISSN: 2164-554X</identifier><identifier>DOI: 10.1080/21645515.2018.1495303</identifier><identifier>PMID: 30015562</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Animals ; CD4-Positive T-Lymphocytes - immunology ; Computational Biology ; epitope prediction ; Epitopes, T-Lymphocyte - chemistry ; Epitopes, T-Lymphocyte - genetics ; Epitopes, T-Lymphocyte - immunology ; H7N9 ; hemagglutinin ; Hemagglutinin Glycoproteins, Influenza Virus - chemistry ; Hemagglutinin Glycoproteins, Influenza Virus - genetics ; Hemagglutinin Glycoproteins, Influenza Virus - immunology ; Humans ; immunoinformatics ; influenza ; Influenza A Virus, H7N9 Subtype - genetics ; Influenza A Virus, H7N9 Subtype - immunology ; Influenza Vaccines - administration & dosage ; Influenza Vaccines - genetics ; Influenza Vaccines - immunology ; Models, Biological ; Models, Molecular ; molecular modeling ; pandemic ; structure-based vaccine design ; T cell ; T cell epitope ; vaccine ; Vaccines, Synthetic - administration & dosage ; Vaccines, Synthetic - genetics ; Vaccines, Synthetic - immunology</subject><ispartof>Human vaccines & immunotherapeutics, 2018-09, Vol.14 (9), p.2203-2207</ispartof><rights>2018 The Author(s). Published with license by Taylor & Francis Group, LLC 2018</rights><rights>2018 The Author(s). Published with license by Taylor & Francis Group, LLC 2018 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</citedby><cites>FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</cites><orcidid>0000-0003-1947-7469 ; 0000-0001-5911-1459 ; 0000-0001-9390-230X ; 0000-0002-4410-865X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30015562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moise, Leonard</creatorcontrib><creatorcontrib>M. Biron, Bethany</creatorcontrib><creatorcontrib>Boyle, Christine M.</creatorcontrib><creatorcontrib>Kurt Yilmaz, Nese</creatorcontrib><creatorcontrib>Jang, Hyesun</creatorcontrib><creatorcontrib>Schiffer, Celia</creatorcontrib><creatorcontrib>M. Ross, Ted</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><title>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</title><title>Human vaccines & immunotherapeutics</title><addtitle>Hum Vaccin Immunother</addtitle><description>The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4
+
T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4
+
T cell memory to influenza immunity, (ii) the essential role CD4
+
T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4
+
T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</description><subject>Animals</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>Computational Biology</subject><subject>epitope prediction</subject><subject>Epitopes, T-Lymphocyte - chemistry</subject><subject>Epitopes, T-Lymphocyte - genetics</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>H7N9</subject><subject>hemagglutinin</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - genetics</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - immunology</subject><subject>Humans</subject><subject>immunoinformatics</subject><subject>influenza</subject><subject>Influenza A Virus, H7N9 Subtype - genetics</subject><subject>Influenza A Virus, H7N9 Subtype - immunology</subject><subject>Influenza Vaccines - administration & dosage</subject><subject>Influenza Vaccines - genetics</subject><subject>Influenza Vaccines - immunology</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>molecular modeling</subject><subject>pandemic</subject><subject>structure-based vaccine design</subject><subject>T cell</subject><subject>T cell epitope</subject><subject>vaccine</subject><subject>Vaccines, Synthetic - administration & dosage</subject><subject>Vaccines, Synthetic - genetics</subject><subject>Vaccines, Synthetic - immunology</subject><issn>2164-5515</issn><issn>2164-554X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpTwD5yGW3duKPhAMCVdBWquBSJG7W2BkHl6wd7OxWy6_Hy25X9IIP9mj8zjP2vFX1mtEloy29qJnkQjCxrClrl4x3oqHNs-p0l18Iwb8_P8ZMnFTnOd_TshStuZQvq5OGUiaErE-rn3fE4jgSnPwcJyQYBh8Qkw_DOwKBwMaX_Vp96YgPblxj-A1kA9YWFclzghmHLXExkQlCjytvyZRwgoR9wJwLoicJ8xRDxlfVCwdjxvPDeVZ9-_zp7vJ6cfv16uby4-3CiobPC4sKQHDgaKU10rAWHFetkhIMWNMBry23rWgsgxp64xoQDJyTjinbGmjOqps9t49wr6fkV5C2OoLXfxMxDRrS7O2IuhXcGdNIBKC8M9AJabFF1YIyogyvsN7vWdParLC3GMqfxyfQpzfB_9BD3GjJ2oZ1qgDeHgAp_lpjnvXK593IIWBcZ11TxYRUdV0XqdhLbYo5J3THNozqne_60Xe9810ffC91b_5947Hq0eUi-LAXFAtjWsFDTGOvZ9iOMbkEwfqsm__3-ANgnL-9</recordid><startdate>20180902</startdate><enddate>20180902</enddate><creator>Moise, Leonard</creator><creator>M. Biron, Bethany</creator><creator>Boyle, Christine M.</creator><creator>Kurt Yilmaz, Nese</creator><creator>Jang, Hyesun</creator><creator>Schiffer, Celia</creator><creator>M. Ross, Ted</creator><creator>Martin, William D.</creator><creator>De Groot, Anne S.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1947-7469</orcidid><orcidid>https://orcid.org/0000-0001-5911-1459</orcidid><orcidid>https://orcid.org/0000-0001-9390-230X</orcidid><orcidid>https://orcid.org/0000-0002-4410-865X</orcidid></search><sort><creationdate>20180902</creationdate><title>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</title><author>Moise, Leonard ; M. Biron, Bethany ; Boyle, Christine M. ; Kurt Yilmaz, Nese ; Jang, Hyesun ; Schiffer, Celia ; M. Ross, Ted ; Martin, William D. ; De Groot, Anne S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>Computational Biology</topic><topic>epitope prediction</topic><topic>Epitopes, T-Lymphocyte - chemistry</topic><topic>Epitopes, T-Lymphocyte - genetics</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>H7N9</topic><topic>hemagglutinin</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - genetics</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - immunology</topic><topic>Humans</topic><topic>immunoinformatics</topic><topic>influenza</topic><topic>Influenza A Virus, H7N9 Subtype - genetics</topic><topic>Influenza A Virus, H7N9 Subtype - immunology</topic><topic>Influenza Vaccines - administration & dosage</topic><topic>Influenza Vaccines - genetics</topic><topic>Influenza Vaccines - immunology</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>molecular modeling</topic><topic>pandemic</topic><topic>structure-based vaccine design</topic><topic>T cell</topic><topic>T cell epitope</topic><topic>vaccine</topic><topic>Vaccines, Synthetic - administration & dosage</topic><topic>Vaccines, Synthetic - genetics</topic><topic>Vaccines, Synthetic - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moise, Leonard</creatorcontrib><creatorcontrib>M. Biron, Bethany</creatorcontrib><creatorcontrib>Boyle, Christine M.</creatorcontrib><creatorcontrib>Kurt Yilmaz, Nese</creatorcontrib><creatorcontrib>Jang, Hyesun</creatorcontrib><creatorcontrib>Schiffer, Celia</creatorcontrib><creatorcontrib>M. Ross, Ted</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Human vaccines & immunotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moise, Leonard</au><au>M. Biron, Bethany</au><au>Boyle, Christine M.</au><au>Kurt Yilmaz, Nese</au><au>Jang, Hyesun</au><au>Schiffer, Celia</au><au>M. Ross, Ted</au><au>Martin, William D.</au><au>De Groot, Anne S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</atitle><jtitle>Human vaccines & immunotherapeutics</jtitle><addtitle>Hum Vaccin Immunother</addtitle><date>2018-09-02</date><risdate>2018</risdate><volume>14</volume><issue>9</issue><spage>2203</spage><epage>2207</epage><pages>2203-2207</pages><issn>2164-5515</issn><eissn>2164-554X</eissn><abstract>The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4
+
T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4
+
T cell memory to influenza immunity, (ii) the essential role CD4
+
T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4
+
T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>30015562</pmid><doi>10.1080/21645515.2018.1495303</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1947-7469</orcidid><orcidid>https://orcid.org/0000-0001-5911-1459</orcidid><orcidid>https://orcid.org/0000-0001-9390-230X</orcidid><orcidid>https://orcid.org/0000-0002-4410-865X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2164-5515 |
ispartof | Human vaccines & immunotherapeutics, 2018-09, Vol.14 (9), p.2203-2207 |
issn | 2164-5515 2164-554X |
language | eng |
recordid | cdi_crossref_primary_10_1080_21645515_2018_1495303 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animals CD4-Positive T-Lymphocytes - immunology Computational Biology epitope prediction Epitopes, T-Lymphocyte - chemistry Epitopes, T-Lymphocyte - genetics Epitopes, T-Lymphocyte - immunology H7N9 hemagglutinin Hemagglutinin Glycoproteins, Influenza Virus - chemistry Hemagglutinin Glycoproteins, Influenza Virus - genetics Hemagglutinin Glycoproteins, Influenza Virus - immunology Humans immunoinformatics influenza Influenza A Virus, H7N9 Subtype - genetics Influenza A Virus, H7N9 Subtype - immunology Influenza Vaccines - administration & dosage Influenza Vaccines - genetics Influenza Vaccines - immunology Models, Biological Models, Molecular molecular modeling pandemic structure-based vaccine design T cell T cell epitope vaccine Vaccines, Synthetic - administration & dosage Vaccines, Synthetic - genetics Vaccines, Synthetic - immunology |
title | T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T%20cell%20epitope%20engineering:%20an%20avian%20H7N9%20influenza%20vaccine%20strategy%20for%20pandemic%20preparedness%20and%20response&rft.jtitle=Human%20vaccines%20&%20immunotherapeutics&rft.au=Moise,%20Leonard&rft.date=2018-09-02&rft.volume=14&rft.issue=9&rft.spage=2203&rft.epage=2207&rft.pages=2203-2207&rft.issn=2164-5515&rft.eissn=2164-554X&rft_id=info:doi/10.1080/21645515.2018.1495303&rft_dat=%3Cproquest_cross%3E2071567222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071567222&rft_id=info:pmid/30015562&rft_doaj_id=oai_doaj_org_article_854fbb36eaa049ba956ce8e78a7b5551&rfr_iscdi=true |