T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response

The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human vaccines & immunotherapeutics 2018-09, Vol.14 (9), p.2203-2207
Hauptverfasser: Moise, Leonard, M. Biron, Bethany, Boyle, Christine M., Kurt Yilmaz, Nese, Jang, Hyesun, Schiffer, Celia, M. Ross, Ted, Martin, William D., De Groot, Anne S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2207
container_issue 9
container_start_page 2203
container_title Human vaccines & immunotherapeutics
container_volume 14
creator Moise, Leonard
M. Biron, Bethany
Boyle, Christine M.
Kurt Yilmaz, Nese
Jang, Hyesun
Schiffer, Celia
M. Ross, Ted
Martin, William D.
De Groot, Anne S.
description The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4 + T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4 + T cell memory to influenza immunity, (ii) the essential role CD4 + T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4 + T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.
doi_str_mv 10.1080/21645515.2018.1495303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_21645515_2018_1495303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_854fbb36eaa049ba956ce8e78a7b5551</doaj_id><sourcerecordid>2071567222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpTwD5yGW3duKPhAMCVdBWquBSJG7W2BkHl6wd7OxWy6_Hy25X9IIP9mj8zjP2vFX1mtEloy29qJnkQjCxrClrl4x3oqHNs-p0l18Iwb8_P8ZMnFTnOd_TshStuZQvq5OGUiaErE-rn3fE4jgSnPwcJyQYBh8Qkw_DOwKBwMaX_Vp96YgPblxj-A1kA9YWFclzghmHLXExkQlCjytvyZRwgoR9wJwLoicJ8xRDxlfVCwdjxvPDeVZ9-_zp7vJ6cfv16uby4-3CiobPC4sKQHDgaKU10rAWHFetkhIMWNMBry23rWgsgxp64xoQDJyTjinbGmjOqps9t49wr6fkV5C2OoLXfxMxDRrS7O2IuhXcGdNIBKC8M9AJabFF1YIyogyvsN7vWdParLC3GMqfxyfQpzfB_9BD3GjJ2oZ1qgDeHgAp_lpjnvXK593IIWBcZ11TxYRUdV0XqdhLbYo5J3THNozqne_60Xe9810ffC91b_5947Hq0eUi-LAXFAtjWsFDTGOvZ9iOMbkEwfqsm__3-ANgnL-9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071567222</pqid></control><display><type>article</type><title>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moise, Leonard ; M. Biron, Bethany ; Boyle, Christine M. ; Kurt Yilmaz, Nese ; Jang, Hyesun ; Schiffer, Celia ; M. Ross, Ted ; Martin, William D. ; De Groot, Anne S.</creator><creatorcontrib>Moise, Leonard ; M. Biron, Bethany ; Boyle, Christine M. ; Kurt Yilmaz, Nese ; Jang, Hyesun ; Schiffer, Celia ; M. Ross, Ted ; Martin, William D. ; De Groot, Anne S.</creatorcontrib><description>The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4 + T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4 + T cell memory to influenza immunity, (ii) the essential role CD4 + T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4 + T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</description><identifier>ISSN: 2164-5515</identifier><identifier>EISSN: 2164-554X</identifier><identifier>DOI: 10.1080/21645515.2018.1495303</identifier><identifier>PMID: 30015562</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; CD4-Positive T-Lymphocytes - immunology ; Computational Biology ; epitope prediction ; Epitopes, T-Lymphocyte - chemistry ; Epitopes, T-Lymphocyte - genetics ; Epitopes, T-Lymphocyte - immunology ; H7N9 ; hemagglutinin ; Hemagglutinin Glycoproteins, Influenza Virus - chemistry ; Hemagglutinin Glycoproteins, Influenza Virus - genetics ; Hemagglutinin Glycoproteins, Influenza Virus - immunology ; Humans ; immunoinformatics ; influenza ; Influenza A Virus, H7N9 Subtype - genetics ; Influenza A Virus, H7N9 Subtype - immunology ; Influenza Vaccines - administration &amp; dosage ; Influenza Vaccines - genetics ; Influenza Vaccines - immunology ; Models, Biological ; Models, Molecular ; molecular modeling ; pandemic ; structure-based vaccine design ; T cell ; T cell epitope ; vaccine ; Vaccines, Synthetic - administration &amp; dosage ; Vaccines, Synthetic - genetics ; Vaccines, Synthetic - immunology</subject><ispartof>Human vaccines &amp; immunotherapeutics, 2018-09, Vol.14 (9), p.2203-2207</ispartof><rights>2018 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2018</rights><rights>2018 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2018 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</citedby><cites>FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</cites><orcidid>0000-0003-1947-7469 ; 0000-0001-5911-1459 ; 0000-0001-9390-230X ; 0000-0002-4410-865X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6183197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30015562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moise, Leonard</creatorcontrib><creatorcontrib>M. Biron, Bethany</creatorcontrib><creatorcontrib>Boyle, Christine M.</creatorcontrib><creatorcontrib>Kurt Yilmaz, Nese</creatorcontrib><creatorcontrib>Jang, Hyesun</creatorcontrib><creatorcontrib>Schiffer, Celia</creatorcontrib><creatorcontrib>M. Ross, Ted</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><title>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</title><title>Human vaccines &amp; immunotherapeutics</title><addtitle>Hum Vaccin Immunother</addtitle><description>The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4 + T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4 + T cell memory to influenza immunity, (ii) the essential role CD4 + T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4 + T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</description><subject>Animals</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>Computational Biology</subject><subject>epitope prediction</subject><subject>Epitopes, T-Lymphocyte - chemistry</subject><subject>Epitopes, T-Lymphocyte - genetics</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>H7N9</subject><subject>hemagglutinin</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - genetics</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - immunology</subject><subject>Humans</subject><subject>immunoinformatics</subject><subject>influenza</subject><subject>Influenza A Virus, H7N9 Subtype - genetics</subject><subject>Influenza A Virus, H7N9 Subtype - immunology</subject><subject>Influenza Vaccines - administration &amp; dosage</subject><subject>Influenza Vaccines - genetics</subject><subject>Influenza Vaccines - immunology</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>molecular modeling</subject><subject>pandemic</subject><subject>structure-based vaccine design</subject><subject>T cell</subject><subject>T cell epitope</subject><subject>vaccine</subject><subject>Vaccines, Synthetic - administration &amp; dosage</subject><subject>Vaccines, Synthetic - genetics</subject><subject>Vaccines, Synthetic - immunology</subject><issn>2164-5515</issn><issn>2164-554X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpTwD5yGW3duKPhAMCVdBWquBSJG7W2BkHl6wd7OxWy6_Hy25X9IIP9mj8zjP2vFX1mtEloy29qJnkQjCxrClrl4x3oqHNs-p0l18Iwb8_P8ZMnFTnOd_TshStuZQvq5OGUiaErE-rn3fE4jgSnPwcJyQYBh8Qkw_DOwKBwMaX_Vp96YgPblxj-A1kA9YWFclzghmHLXExkQlCjytvyZRwgoR9wJwLoicJ8xRDxlfVCwdjxvPDeVZ9-_zp7vJ6cfv16uby4-3CiobPC4sKQHDgaKU10rAWHFetkhIMWNMBry23rWgsgxp64xoQDJyTjinbGmjOqps9t49wr6fkV5C2OoLXfxMxDRrS7O2IuhXcGdNIBKC8M9AJabFF1YIyogyvsN7vWdParLC3GMqfxyfQpzfB_9BD3GjJ2oZ1qgDeHgAp_lpjnvXK593IIWBcZ11TxYRUdV0XqdhLbYo5J3THNozqne_60Xe9810ffC91b_5947Hq0eUi-LAXFAtjWsFDTGOvZ9iOMbkEwfqsm__3-ANgnL-9</recordid><startdate>20180902</startdate><enddate>20180902</enddate><creator>Moise, Leonard</creator><creator>M. Biron, Bethany</creator><creator>Boyle, Christine M.</creator><creator>Kurt Yilmaz, Nese</creator><creator>Jang, Hyesun</creator><creator>Schiffer, Celia</creator><creator>M. Ross, Ted</creator><creator>Martin, William D.</creator><creator>De Groot, Anne S.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1947-7469</orcidid><orcidid>https://orcid.org/0000-0001-5911-1459</orcidid><orcidid>https://orcid.org/0000-0001-9390-230X</orcidid><orcidid>https://orcid.org/0000-0002-4410-865X</orcidid></search><sort><creationdate>20180902</creationdate><title>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</title><author>Moise, Leonard ; M. Biron, Bethany ; Boyle, Christine M. ; Kurt Yilmaz, Nese ; Jang, Hyesun ; Schiffer, Celia ; M. Ross, Ted ; Martin, William D. ; De Groot, Anne S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-ce7aa54a4ec6cb6b18af478766abacb9a42c4c853c1a2adbf3a51aff6f17c8ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>Computational Biology</topic><topic>epitope prediction</topic><topic>Epitopes, T-Lymphocyte - chemistry</topic><topic>Epitopes, T-Lymphocyte - genetics</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>H7N9</topic><topic>hemagglutinin</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - chemistry</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - genetics</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - immunology</topic><topic>Humans</topic><topic>immunoinformatics</topic><topic>influenza</topic><topic>Influenza A Virus, H7N9 Subtype - genetics</topic><topic>Influenza A Virus, H7N9 Subtype - immunology</topic><topic>Influenza Vaccines - administration &amp; dosage</topic><topic>Influenza Vaccines - genetics</topic><topic>Influenza Vaccines - immunology</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>molecular modeling</topic><topic>pandemic</topic><topic>structure-based vaccine design</topic><topic>T cell</topic><topic>T cell epitope</topic><topic>vaccine</topic><topic>Vaccines, Synthetic - administration &amp; dosage</topic><topic>Vaccines, Synthetic - genetics</topic><topic>Vaccines, Synthetic - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moise, Leonard</creatorcontrib><creatorcontrib>M. Biron, Bethany</creatorcontrib><creatorcontrib>Boyle, Christine M.</creatorcontrib><creatorcontrib>Kurt Yilmaz, Nese</creatorcontrib><creatorcontrib>Jang, Hyesun</creatorcontrib><creatorcontrib>Schiffer, Celia</creatorcontrib><creatorcontrib>M. Ross, Ted</creatorcontrib><creatorcontrib>Martin, William D.</creatorcontrib><creatorcontrib>De Groot, Anne S.</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Human vaccines &amp; immunotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moise, Leonard</au><au>M. Biron, Bethany</au><au>Boyle, Christine M.</au><au>Kurt Yilmaz, Nese</au><au>Jang, Hyesun</au><au>Schiffer, Celia</au><au>M. Ross, Ted</au><au>Martin, William D.</au><au>De Groot, Anne S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response</atitle><jtitle>Human vaccines &amp; immunotherapeutics</jtitle><addtitle>Hum Vaccin Immunother</addtitle><date>2018-09-02</date><risdate>2018</risdate><volume>14</volume><issue>9</issue><spage>2203</spage><epage>2207</epage><pages>2203-2207</pages><issn>2164-5515</issn><eissn>2164-554X</eissn><abstract>The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4 + T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4 + T cell memory to influenza immunity, (ii) the essential role CD4 + T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4 + T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>30015562</pmid><doi>10.1080/21645515.2018.1495303</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1947-7469</orcidid><orcidid>https://orcid.org/0000-0001-5911-1459</orcidid><orcidid>https://orcid.org/0000-0001-9390-230X</orcidid><orcidid>https://orcid.org/0000-0002-4410-865X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2164-5515
ispartof Human vaccines & immunotherapeutics, 2018-09, Vol.14 (9), p.2203-2207
issn 2164-5515
2164-554X
language eng
recordid cdi_crossref_primary_10_1080_21645515_2018_1495303
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animals
CD4-Positive T-Lymphocytes - immunology
Computational Biology
epitope prediction
Epitopes, T-Lymphocyte - chemistry
Epitopes, T-Lymphocyte - genetics
Epitopes, T-Lymphocyte - immunology
H7N9
hemagglutinin
Hemagglutinin Glycoproteins, Influenza Virus - chemistry
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Hemagglutinin Glycoproteins, Influenza Virus - immunology
Humans
immunoinformatics
influenza
Influenza A Virus, H7N9 Subtype - genetics
Influenza A Virus, H7N9 Subtype - immunology
Influenza Vaccines - administration & dosage
Influenza Vaccines - genetics
Influenza Vaccines - immunology
Models, Biological
Models, Molecular
molecular modeling
pandemic
structure-based vaccine design
T cell
T cell epitope
vaccine
Vaccines, Synthetic - administration & dosage
Vaccines, Synthetic - genetics
Vaccines, Synthetic - immunology
title T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T%20cell%20epitope%20engineering:%20an%20avian%20H7N9%20influenza%20vaccine%20strategy%20for%20pandemic%20preparedness%20and%20response&rft.jtitle=Human%20vaccines%20&%20immunotherapeutics&rft.au=Moise,%20Leonard&rft.date=2018-09-02&rft.volume=14&rft.issue=9&rft.spage=2203&rft.epage=2207&rft.pages=2203-2207&rft.issn=2164-5515&rft.eissn=2164-554X&rft_id=info:doi/10.1080/21645515.2018.1495303&rft_dat=%3Cproquest_cross%3E2071567222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071567222&rft_id=info:pmid/30015562&rft_doaj_id=oai_doaj_org_article_854fbb36eaa049ba956ce8e78a7b5551&rfr_iscdi=true