Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets

Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Big earth data 2019-04, Vol.3 (2), p.108-139
Hauptverfasser: Lloyd, Christopher T., Chamberlain, Heather, Kerr, David, Yetman, Greg, Pistolesi, Linda, Stevens, Forrest R., Gaughan, Andrea E., Nieves, Jeremiah J., Hornby, Graeme, MacManus, Kytt, Sinha, Parmanand, Bondarenko, Maksym, Sorichetta, Alessandro, Tatem, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 2
container_start_page 108
container_title Big earth data
container_volume 3
creator Lloyd, Christopher T.
Chamberlain, Heather
Kerr, David
Yetman, Greg
Pistolesi, Linda
Stevens, Forrest R.
Gaughan, Andrea E.
Nieves, Jeremiah J.
Hornby, Graeme
MacManus, Kytt
Sinha, Parmanand
Bondarenko, Maksym
Sorichetta, Alessandro
Tatem, Andrew J.
description Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at https://doi.org/10.5258/SOTON/WP00650 .
doi_str_mv 10.1080/20964471.2019.1625151
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20964471_2019_1625151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58748e97421a461d86dd2da254fc3472</doaj_id><sourcerecordid>31565697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhSMEolXpI4DyAlnsxL83CFRBqVSJG7i2Jv7JunLiyPaC9u3xNt2K3nBla-acbzRzmuY9RjuMBPrYI8kI4XjXIyx3mPUUU_yquewpJx0lmL-u_6rpTqKL5jrnB4SqVEqG-NvmYsCUUSb5ZZNvQxwhtHmF4mNX7LzGBCEc2z2kOS4-W9MaKJBtya2LqV1TNAftl6nd-2nfJZtjOFTv0k7JG1Pla1wPAR5LxueS_Lj1z5h3zRsHIdvrp_eq-fXt68-b7939j9u7my_3naYDKZ3uhQCggohBEuaoG0fkRgea0Lo8EdJph41jhiErB041FciaegptRmvIMFw1dxvXRHhQa_IzpKOK4NVjIaZJQSpeB6uo4ERYyUmPgTBsBDOmN9BT4vRAeF9ZnzbWehhna7RdSj3TC-jLzuL3aoq_FeNkqNgKoBtAp5hzsu7Zi5E6harOoapTqOop1Or78O_gZ9c5wir4vAn8UuOZ4U9MwagCxxCTS7Bon6v4vzP-AhiStYs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lloyd, Christopher T. ; Chamberlain, Heather ; Kerr, David ; Yetman, Greg ; Pistolesi, Linda ; Stevens, Forrest R. ; Gaughan, Andrea E. ; Nieves, Jeremiah J. ; Hornby, Graeme ; MacManus, Kytt ; Sinha, Parmanand ; Bondarenko, Maksym ; Sorichetta, Alessandro ; Tatem, Andrew J.</creator><creatorcontrib>Lloyd, Christopher T. ; Chamberlain, Heather ; Kerr, David ; Yetman, Greg ; Pistolesi, Linda ; Stevens, Forrest R. ; Gaughan, Andrea E. ; Nieves, Jeremiah J. ; Hornby, Graeme ; MacManus, Kytt ; Sinha, Parmanand ; Bondarenko, Maksym ; Sorichetta, Alessandro ; Tatem, Andrew J.</creatorcontrib><description>Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at https://doi.org/10.5258/SOTON/WP00650 .</description><identifier>ISSN: 2096-4471</identifier><identifier>EISSN: 2574-5417</identifier><identifier>DOI: 10.1080/20964471.2019.1625151</identifier><identifier>PMID: 31565697</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>Data ; global ; Human population ; multi-temporal ; spatial dataset ; sub-national</subject><ispartof>Big earth data, 2019-04, Vol.3 (2), p.108-139</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the CASEarth Strategic Priority Research Programme. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the CASEarth Strategic Priority Research Programme.</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the CASEarth Strategic Priority Research Programme. 2019 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</citedby><cites>FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</cites><orcidid>0000-0002-7270-941X ; 0000-0002-3576-5826 ; 0000-0002-5270-6975 ; 0000-0002-7423-1341 ; 0000-0002-9328-3753 ; 0000-0001-7435-8230 ; 0000-0002-2833-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/20964471.2019.1625151$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/20964471.2019.1625151$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,27479,27901,27902,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31565697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lloyd, Christopher T.</creatorcontrib><creatorcontrib>Chamberlain, Heather</creatorcontrib><creatorcontrib>Kerr, David</creatorcontrib><creatorcontrib>Yetman, Greg</creatorcontrib><creatorcontrib>Pistolesi, Linda</creatorcontrib><creatorcontrib>Stevens, Forrest R.</creatorcontrib><creatorcontrib>Gaughan, Andrea E.</creatorcontrib><creatorcontrib>Nieves, Jeremiah J.</creatorcontrib><creatorcontrib>Hornby, Graeme</creatorcontrib><creatorcontrib>MacManus, Kytt</creatorcontrib><creatorcontrib>Sinha, Parmanand</creatorcontrib><creatorcontrib>Bondarenko, Maksym</creatorcontrib><creatorcontrib>Sorichetta, Alessandro</creatorcontrib><creatorcontrib>Tatem, Andrew J.</creatorcontrib><title>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</title><title>Big earth data</title><addtitle>Big Earth Data</addtitle><description>Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at https://doi.org/10.5258/SOTON/WP00650 .</description><subject>Data</subject><subject>global</subject><subject>Human population</subject><subject>multi-temporal</subject><subject>spatial dataset</subject><subject>sub-national</subject><issn>2096-4471</issn><issn>2574-5417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kd1u1DAQhSMEolXpI4DyAlnsxL83CFRBqVSJG7i2Jv7JunLiyPaC9u3xNt2K3nBla-acbzRzmuY9RjuMBPrYI8kI4XjXIyx3mPUUU_yquewpJx0lmL-u_6rpTqKL5jrnB4SqVEqG-NvmYsCUUSb5ZZNvQxwhtHmF4mNX7LzGBCEc2z2kOS4-W9MaKJBtya2LqV1TNAftl6nd-2nfJZtjOFTv0k7JG1Pla1wPAR5LxueS_Lj1z5h3zRsHIdvrp_eq-fXt68-b7939j9u7my_3naYDKZ3uhQCggohBEuaoG0fkRgea0Lo8EdJph41jhiErB041FciaegptRmvIMFw1dxvXRHhQa_IzpKOK4NVjIaZJQSpeB6uo4ERYyUmPgTBsBDOmN9BT4vRAeF9ZnzbWehhna7RdSj3TC-jLzuL3aoq_FeNkqNgKoBtAp5hzsu7Zi5E6harOoapTqOop1Or78O_gZ9c5wir4vAn8UuOZ4U9MwagCxxCTS7Bon6v4vzP-AhiStYs</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Lloyd, Christopher T.</creator><creator>Chamberlain, Heather</creator><creator>Kerr, David</creator><creator>Yetman, Greg</creator><creator>Pistolesi, Linda</creator><creator>Stevens, Forrest R.</creator><creator>Gaughan, Andrea E.</creator><creator>Nieves, Jeremiah J.</creator><creator>Hornby, Graeme</creator><creator>MacManus, Kytt</creator><creator>Sinha, Parmanand</creator><creator>Bondarenko, Maksym</creator><creator>Sorichetta, Alessandro</creator><creator>Tatem, Andrew J.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7270-941X</orcidid><orcidid>https://orcid.org/0000-0002-3576-5826</orcidid><orcidid>https://orcid.org/0000-0002-5270-6975</orcidid><orcidid>https://orcid.org/0000-0002-7423-1341</orcidid><orcidid>https://orcid.org/0000-0002-9328-3753</orcidid><orcidid>https://orcid.org/0000-0001-7435-8230</orcidid><orcidid>https://orcid.org/0000-0002-2833-8711</orcidid></search><sort><creationdate>20190403</creationdate><title>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</title><author>Lloyd, Christopher T. ; Chamberlain, Heather ; Kerr, David ; Yetman, Greg ; Pistolesi, Linda ; Stevens, Forrest R. ; Gaughan, Andrea E. ; Nieves, Jeremiah J. ; Hornby, Graeme ; MacManus, Kytt ; Sinha, Parmanand ; Bondarenko, Maksym ; Sorichetta, Alessandro ; Tatem, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data</topic><topic>global</topic><topic>Human population</topic><topic>multi-temporal</topic><topic>spatial dataset</topic><topic>sub-national</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Christopher T.</creatorcontrib><creatorcontrib>Chamberlain, Heather</creatorcontrib><creatorcontrib>Kerr, David</creatorcontrib><creatorcontrib>Yetman, Greg</creatorcontrib><creatorcontrib>Pistolesi, Linda</creatorcontrib><creatorcontrib>Stevens, Forrest R.</creatorcontrib><creatorcontrib>Gaughan, Andrea E.</creatorcontrib><creatorcontrib>Nieves, Jeremiah J.</creatorcontrib><creatorcontrib>Hornby, Graeme</creatorcontrib><creatorcontrib>MacManus, Kytt</creatorcontrib><creatorcontrib>Sinha, Parmanand</creatorcontrib><creatorcontrib>Bondarenko, Maksym</creatorcontrib><creatorcontrib>Sorichetta, Alessandro</creatorcontrib><creatorcontrib>Tatem, Andrew J.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Big earth data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Christopher T.</au><au>Chamberlain, Heather</au><au>Kerr, David</au><au>Yetman, Greg</au><au>Pistolesi, Linda</au><au>Stevens, Forrest R.</au><au>Gaughan, Andrea E.</au><au>Nieves, Jeremiah J.</au><au>Hornby, Graeme</au><au>MacManus, Kytt</au><au>Sinha, Parmanand</au><au>Bondarenko, Maksym</au><au>Sorichetta, Alessandro</au><au>Tatem, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</atitle><jtitle>Big earth data</jtitle><addtitle>Big Earth Data</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>3</volume><issue>2</issue><spage>108</spage><epage>139</epage><pages>108-139</pages><issn>2096-4471</issn><eissn>2574-5417</eissn><abstract>Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at https://doi.org/10.5258/SOTON/WP00650 .</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>31565697</pmid><doi>10.1080/20964471.2019.1625151</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-7270-941X</orcidid><orcidid>https://orcid.org/0000-0002-3576-5826</orcidid><orcidid>https://orcid.org/0000-0002-5270-6975</orcidid><orcidid>https://orcid.org/0000-0002-7423-1341</orcidid><orcidid>https://orcid.org/0000-0002-9328-3753</orcidid><orcidid>https://orcid.org/0000-0001-7435-8230</orcidid><orcidid>https://orcid.org/0000-0002-2833-8711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2096-4471
ispartof Big earth data, 2019-04, Vol.3 (2), p.108-139
issn 2096-4471
2574-5417
language eng
recordid cdi_crossref_primary_10_1080_20964471_2019_1625151
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Data
global
Human population
multi-temporal
spatial dataset
sub-national
title Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20spatio-temporally%20harmonised%20datasets%20for%20producing%20high-resolution%20gridded%20population%20distribution%20datasets&rft.jtitle=Big%20earth%20data&rft.au=Lloyd,%20Christopher%20T.&rft.date=2019-04-03&rft.volume=3&rft.issue=2&rft.spage=108&rft.epage=139&rft.pages=108-139&rft.issn=2096-4471&rft.eissn=2574-5417&rft_id=info:doi/10.1080/20964471.2019.1625151&rft_dat=%3Cpubmed_cross%3E31565697%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31565697&rft_doaj_id=oai_doaj_org_article_58748e97421a461d86dd2da254fc3472&rfr_iscdi=true