Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets
Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliab...
Gespeichert in:
Veröffentlicht in: | Big earth data 2019-04, Vol.3 (2), p.108-139 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 2 |
container_start_page | 108 |
container_title | Big earth data |
container_volume | 3 |
creator | Lloyd, Christopher T. Chamberlain, Heather Kerr, David Yetman, Greg Pistolesi, Linda Stevens, Forrest R. Gaughan, Andrea E. Nieves, Jeremiah J. Hornby, Graeme MacManus, Kytt Sinha, Parmanand Bondarenko, Maksym Sorichetta, Alessandro Tatem, Andrew J. |
description | Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at
https://doi.org/10.5258/SOTON/WP00650
. |
doi_str_mv | 10.1080/20964471.2019.1625151 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20964471_2019_1625151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_58748e97421a461d86dd2da254fc3472</doaj_id><sourcerecordid>31565697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</originalsourceid><addsrcrecordid>eNp9kd1u1DAQhSMEolXpI4DyAlnsxL83CFRBqVSJG7i2Jv7JunLiyPaC9u3xNt2K3nBla-acbzRzmuY9RjuMBPrYI8kI4XjXIyx3mPUUU_yquewpJx0lmL-u_6rpTqKL5jrnB4SqVEqG-NvmYsCUUSb5ZZNvQxwhtHmF4mNX7LzGBCEc2z2kOS4-W9MaKJBtya2LqV1TNAftl6nd-2nfJZtjOFTv0k7JG1Pla1wPAR5LxueS_Lj1z5h3zRsHIdvrp_eq-fXt68-b7939j9u7my_3naYDKZ3uhQCggohBEuaoG0fkRgea0Lo8EdJph41jhiErB041FciaegptRmvIMFw1dxvXRHhQa_IzpKOK4NVjIaZJQSpeB6uo4ERYyUmPgTBsBDOmN9BT4vRAeF9ZnzbWehhna7RdSj3TC-jLzuL3aoq_FeNkqNgKoBtAp5hzsu7Zi5E6harOoapTqOop1Or78O_gZ9c5wir4vAn8UuOZ4U9MwagCxxCTS7Bon6v4vzP-AhiStYs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lloyd, Christopher T. ; Chamberlain, Heather ; Kerr, David ; Yetman, Greg ; Pistolesi, Linda ; Stevens, Forrest R. ; Gaughan, Andrea E. ; Nieves, Jeremiah J. ; Hornby, Graeme ; MacManus, Kytt ; Sinha, Parmanand ; Bondarenko, Maksym ; Sorichetta, Alessandro ; Tatem, Andrew J.</creator><creatorcontrib>Lloyd, Christopher T. ; Chamberlain, Heather ; Kerr, David ; Yetman, Greg ; Pistolesi, Linda ; Stevens, Forrest R. ; Gaughan, Andrea E. ; Nieves, Jeremiah J. ; Hornby, Graeme ; MacManus, Kytt ; Sinha, Parmanand ; Bondarenko, Maksym ; Sorichetta, Alessandro ; Tatem, Andrew J.</creatorcontrib><description>Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at
https://doi.org/10.5258/SOTON/WP00650
.</description><identifier>ISSN: 2096-4471</identifier><identifier>EISSN: 2574-5417</identifier><identifier>DOI: 10.1080/20964471.2019.1625151</identifier><identifier>PMID: 31565697</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>Data ; global ; Human population ; multi-temporal ; spatial dataset ; sub-national</subject><ispartof>Big earth data, 2019-04, Vol.3 (2), p.108-139</ispartof><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the CASEarth Strategic Priority Research Programme. 2019</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the CASEarth Strategic Priority Research Programme.</rights><rights>2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth, supported by the CASEarth Strategic Priority Research Programme. 2019 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</citedby><cites>FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</cites><orcidid>0000-0002-7270-941X ; 0000-0002-3576-5826 ; 0000-0002-5270-6975 ; 0000-0002-7423-1341 ; 0000-0002-9328-3753 ; 0000-0001-7435-8230 ; 0000-0002-2833-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/20964471.2019.1625151$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/20964471.2019.1625151$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2096,27479,27901,27902,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31565697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lloyd, Christopher T.</creatorcontrib><creatorcontrib>Chamberlain, Heather</creatorcontrib><creatorcontrib>Kerr, David</creatorcontrib><creatorcontrib>Yetman, Greg</creatorcontrib><creatorcontrib>Pistolesi, Linda</creatorcontrib><creatorcontrib>Stevens, Forrest R.</creatorcontrib><creatorcontrib>Gaughan, Andrea E.</creatorcontrib><creatorcontrib>Nieves, Jeremiah J.</creatorcontrib><creatorcontrib>Hornby, Graeme</creatorcontrib><creatorcontrib>MacManus, Kytt</creatorcontrib><creatorcontrib>Sinha, Parmanand</creatorcontrib><creatorcontrib>Bondarenko, Maksym</creatorcontrib><creatorcontrib>Sorichetta, Alessandro</creatorcontrib><creatorcontrib>Tatem, Andrew J.</creatorcontrib><title>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</title><title>Big earth data</title><addtitle>Big Earth Data</addtitle><description>Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at
https://doi.org/10.5258/SOTON/WP00650
.</description><subject>Data</subject><subject>global</subject><subject>Human population</subject><subject>multi-temporal</subject><subject>spatial dataset</subject><subject>sub-national</subject><issn>2096-4471</issn><issn>2574-5417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kd1u1DAQhSMEolXpI4DyAlnsxL83CFRBqVSJG7i2Jv7JunLiyPaC9u3xNt2K3nBla-acbzRzmuY9RjuMBPrYI8kI4XjXIyx3mPUUU_yquewpJx0lmL-u_6rpTqKL5jrnB4SqVEqG-NvmYsCUUSb5ZZNvQxwhtHmF4mNX7LzGBCEc2z2kOS4-W9MaKJBtya2LqV1TNAftl6nd-2nfJZtjOFTv0k7JG1Pla1wPAR5LxueS_Lj1z5h3zRsHIdvrp_eq-fXt68-b7939j9u7my_3naYDKZ3uhQCggohBEuaoG0fkRgea0Lo8EdJph41jhiErB041FciaegptRmvIMFw1dxvXRHhQa_IzpKOK4NVjIaZJQSpeB6uo4ERYyUmPgTBsBDOmN9BT4vRAeF9ZnzbWehhna7RdSj3TC-jLzuL3aoq_FeNkqNgKoBtAp5hzsu7Zi5E6harOoapTqOop1Or78O_gZ9c5wir4vAn8UuOZ4U9MwagCxxCTS7Bon6v4vzP-AhiStYs</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Lloyd, Christopher T.</creator><creator>Chamberlain, Heather</creator><creator>Kerr, David</creator><creator>Yetman, Greg</creator><creator>Pistolesi, Linda</creator><creator>Stevens, Forrest R.</creator><creator>Gaughan, Andrea E.</creator><creator>Nieves, Jeremiah J.</creator><creator>Hornby, Graeme</creator><creator>MacManus, Kytt</creator><creator>Sinha, Parmanand</creator><creator>Bondarenko, Maksym</creator><creator>Sorichetta, Alessandro</creator><creator>Tatem, Andrew J.</creator><general>Taylor & Francis</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7270-941X</orcidid><orcidid>https://orcid.org/0000-0002-3576-5826</orcidid><orcidid>https://orcid.org/0000-0002-5270-6975</orcidid><orcidid>https://orcid.org/0000-0002-7423-1341</orcidid><orcidid>https://orcid.org/0000-0002-9328-3753</orcidid><orcidid>https://orcid.org/0000-0001-7435-8230</orcidid><orcidid>https://orcid.org/0000-0002-2833-8711</orcidid></search><sort><creationdate>20190403</creationdate><title>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</title><author>Lloyd, Christopher T. ; Chamberlain, Heather ; Kerr, David ; Yetman, Greg ; Pistolesi, Linda ; Stevens, Forrest R. ; Gaughan, Andrea E. ; Nieves, Jeremiah J. ; Hornby, Graeme ; MacManus, Kytt ; Sinha, Parmanand ; Bondarenko, Maksym ; Sorichetta, Alessandro ; Tatem, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-c288aa58483946f5fbb0fbfac45644489fcf1df6d60e9375c580ed251cdbed433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data</topic><topic>global</topic><topic>Human population</topic><topic>multi-temporal</topic><topic>spatial dataset</topic><topic>sub-national</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Christopher T.</creatorcontrib><creatorcontrib>Chamberlain, Heather</creatorcontrib><creatorcontrib>Kerr, David</creatorcontrib><creatorcontrib>Yetman, Greg</creatorcontrib><creatorcontrib>Pistolesi, Linda</creatorcontrib><creatorcontrib>Stevens, Forrest R.</creatorcontrib><creatorcontrib>Gaughan, Andrea E.</creatorcontrib><creatorcontrib>Nieves, Jeremiah J.</creatorcontrib><creatorcontrib>Hornby, Graeme</creatorcontrib><creatorcontrib>MacManus, Kytt</creatorcontrib><creatorcontrib>Sinha, Parmanand</creatorcontrib><creatorcontrib>Bondarenko, Maksym</creatorcontrib><creatorcontrib>Sorichetta, Alessandro</creatorcontrib><creatorcontrib>Tatem, Andrew J.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Big earth data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Christopher T.</au><au>Chamberlain, Heather</au><au>Kerr, David</au><au>Yetman, Greg</au><au>Pistolesi, Linda</au><au>Stevens, Forrest R.</au><au>Gaughan, Andrea E.</au><au>Nieves, Jeremiah J.</au><au>Hornby, Graeme</au><au>MacManus, Kytt</au><au>Sinha, Parmanand</au><au>Bondarenko, Maksym</au><au>Sorichetta, Alessandro</au><au>Tatem, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets</atitle><jtitle>Big earth data</jtitle><addtitle>Big Earth Data</addtitle><date>2019-04-03</date><risdate>2019</risdate><volume>3</volume><issue>2</issue><spage>108</spage><epage>139</epage><pages>108-139</pages><issn>2096-4471</issn><eissn>2574-5417</eissn><abstract>Multi-temporal, globally consistent, high-resolution human population datasets provide consistent and comparable population distributions in support of mapping sub-national heterogeneities in health, wealth, and resource access, and monitoring change in these over time. The production of more reliable and spatially detailed population datasets is increasingly necessary due to the importance of improving metrics at sub-national and multi-temporal scales. This is in support of measurement and monitoring of UN Sustainable Development Goals and related agendas. In response to these agendas, a method has been developed to assemble and harmonise a unique, open access, archive of geospatial datasets. Datasets are provided as global, annual time series, where pertinent at the timescale of population analyses and where data is available, for use in the construction of population distribution layers. The archive includes sub-national census-based population estimates, matched to a geospatial layer denoting administrative unit boundaries, and a number of co-registered gridded geospatial factors that correlate strongly with population presence and density. Here, we describe these harmonised datasets and their limitations, along with the production workflow. Further, we demonstrate applications of the archive by producing multi-temporal gridded population outputs for Africa and using these to derive health and development metrics. The geospatial archive is available at
https://doi.org/10.5258/SOTON/WP00650
.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>31565697</pmid><doi>10.1080/20964471.2019.1625151</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-7270-941X</orcidid><orcidid>https://orcid.org/0000-0002-3576-5826</orcidid><orcidid>https://orcid.org/0000-0002-5270-6975</orcidid><orcidid>https://orcid.org/0000-0002-7423-1341</orcidid><orcidid>https://orcid.org/0000-0002-9328-3753</orcidid><orcidid>https://orcid.org/0000-0001-7435-8230</orcidid><orcidid>https://orcid.org/0000-0002-2833-8711</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2096-4471 |
ispartof | Big earth data, 2019-04, Vol.3 (2), p.108-139 |
issn | 2096-4471 2574-5417 |
language | eng |
recordid | cdi_crossref_primary_10_1080_20964471_2019_1625151 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Data global Human population multi-temporal spatial dataset sub-national |
title | Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20spatio-temporally%20harmonised%20datasets%20for%20producing%20high-resolution%20gridded%20population%20distribution%20datasets&rft.jtitle=Big%20earth%20data&rft.au=Lloyd,%20Christopher%20T.&rft.date=2019-04-03&rft.volume=3&rft.issue=2&rft.spage=108&rft.epage=139&rft.pages=108-139&rft.issn=2096-4471&rft.eissn=2574-5417&rft_id=info:doi/10.1080/20964471.2019.1625151&rft_dat=%3Cpubmed_cross%3E31565697%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31565697&rft_doaj_id=oai_doaj_org_article_58748e97421a461d86dd2da254fc3472&rfr_iscdi=true |