Determination of convective heat transfer coefficient for automated fiber placement (AFP) for thermoplastic composites using hot gas torch
In heat transfer analysis of AFP process using a hot gas torch, the convective heat transfer which occurs between the hot gas flow generated by a torch nozzle and a composite substrate plays an important role in the heat transfer mechanism. In order to model the convective heat transfer, a local hea...
Gespeichert in:
Veröffentlicht in: | Advanced manufacturing. Polymer & composites science 2020-04, Vol.6 (2), p.86-100 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 2 |
container_start_page | 86 |
container_title | Advanced manufacturing. Polymer & composites science |
container_volume | 6 |
creator | Aghababaei Tafreshi, Omid Van Hoa, Suong Shadmehri, Farjad Hoang, Duc Minh Rosca, Daniel |
description | In heat transfer analysis of AFP process using a hot gas torch, the convective heat transfer which occurs between the hot gas flow generated by a torch nozzle and a composite substrate plays an important role in the heat transfer mechanism. In order to model the convective heat transfer, a local heat flux equation
is utilized where
is the energy flow per unit of area per unit of time, h is the convective heat transfer coefficient between the hot gas torch and the composite surface, and
accounts for the temperature difference between the two media. This coefficient h is dependent on various number of parameters such as nozzle geometry and its configuration relative to the surface of the substrate, type and configuration of the roller, gas flow rate, temperature of the gas, type of the gas etc. Researchers on the heat transfer analysis for automated composites manufacturing have used values of h that vary from 80 W/m
2
K to 2500 W/m
2
K. This large range gives rise to uncertainties in the determination of important behavior such as the temperature distributions, residual stresses, and deformations of the composite structures due to the manufacturing process. The reason for these large differences can be due to the differences in the process parameters in each of the studies. The process parameters can include the volume flow rate of the hot gas, the gas temperature, the distance between the nozzle exit and the surface of the composite plate, the angle of the torch with respect to the surface of the substrate etc. In addition, the value of the h coefficient may not be constant over the heating length of the process. The purpose of this paper is three fold: 1. To investigate the AFP process parameters that may affect h. 2. To investigate different methods for the determination of h, and 3. To develop a procedure for less-time-consuming determination of h for the purpose of analysis for residual stresses and deformations. |
doi_str_mv | 10.1080/20550340.2020.1764236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20550340_2020_1764236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35be21789f48468eaf11d0d988d0cff4</doaj_id><sourcerecordid>2417266900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-bce00a5efe3e3203663b1d59a83eb28534dbb4794da18a0b061e7ab5bf2b1c643</originalsourceid><addsrcrecordid>eNp9kc1uFDEQhEcIJKKQR0CyxAUOm7R_ZsZzIwqERIoEBzhbbU9716ud8WJ7E-UVeGo82ZAjJ1tV1Z9brqZ5z-Gcg4YLAW0LUsG5AFGlvlNCdq-ak0VfgWyH1y93BW-bs5y3AMB131f1pPnzhQqlKcxYQpxZ9MzF-Z5cCffENoSFlYRz9pSqQd4HF2guzMfE8FDihIVG5oOt_n6HjqbF_Xh5_ePTU6ZsKjxWJ5fgKmHaxxwKZXbIYV6zTSxsjZmVmNzmXfPG4y7T2fN52vy6_vrz6mZ19_3b7dXl3coprcvKOgLAljxJkgJk10nLx3ZALckK3Uo1Wqv6QY3INYKFjlOPtrVeWO46JU-b2yN3jLg1-xQmTI8mYjBPQkxrg6muuyMjW0uC93rwSqtOE3rORxgHrUdw3i-sD0fWPsXfB8rFbOMhzXV9IxTvRdcNADXVHlMuxZwT-ZdXOZilRfOvRbO0aJ5brHOfj3Nhrp854UNMu9EUfNzF5GstLmQj_4_4C504pXI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417266900</pqid></control><display><type>article</type><title>Determination of convective heat transfer coefficient for automated fiber placement (AFP) for thermoplastic composites using hot gas torch</title><source>DOAJ Directory of Open Access Journals</source><source>Maney Open Access and freely available journals</source><source>Access via Taylor & Francis (Open Access Collection)</source><creator>Aghababaei Tafreshi, Omid ; Van Hoa, Suong ; Shadmehri, Farjad ; Hoang, Duc Minh ; Rosca, Daniel</creator><creatorcontrib>Aghababaei Tafreshi, Omid ; Van Hoa, Suong ; Shadmehri, Farjad ; Hoang, Duc Minh ; Rosca, Daniel</creatorcontrib><description>In heat transfer analysis of AFP process using a hot gas torch, the convective heat transfer which occurs between the hot gas flow generated by a torch nozzle and a composite substrate plays an important role in the heat transfer mechanism. In order to model the convective heat transfer, a local heat flux equation
is utilized where
is the energy flow per unit of area per unit of time, h is the convective heat transfer coefficient between the hot gas torch and the composite surface, and
accounts for the temperature difference between the two media. This coefficient h is dependent on various number of parameters such as nozzle geometry and its configuration relative to the surface of the substrate, type and configuration of the roller, gas flow rate, temperature of the gas, type of the gas etc. Researchers on the heat transfer analysis for automated composites manufacturing have used values of h that vary from 80 W/m
2
K to 2500 W/m
2
K. This large range gives rise to uncertainties in the determination of important behavior such as the temperature distributions, residual stresses, and deformations of the composite structures due to the manufacturing process. The reason for these large differences can be due to the differences in the process parameters in each of the studies. The process parameters can include the volume flow rate of the hot gas, the gas temperature, the distance between the nozzle exit and the surface of the composite plate, the angle of the torch with respect to the surface of the substrate etc. In addition, the value of the h coefficient may not be constant over the heating length of the process. The purpose of this paper is three fold: 1. To investigate the AFP process parameters that may affect h. 2. To investigate different methods for the determination of h, and 3. To develop a procedure for less-time-consuming determination of h for the purpose of analysis for residual stresses and deformations.</description><identifier>ISSN: 2055-0340</identifier><identifier>EISSN: 2055-0359</identifier><identifier>DOI: 10.1080/20550340.2020.1764236</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>automated fiber placement ; Automation ; Composite structures ; Configurations ; Convective heat transfer ; Convective heat transfer coefficient ; Deformation ; Energy flow ; Fiber placement ; Flow velocity ; Gas flow ; Gas temperature ; Heat flux ; Heat transfer ; Heat transfer coefficients ; impinging jet heat transfer ; Nozzle geometry ; Polymer matrix composites ; Process parameters ; Residual stress ; Substrates ; Temperature gradients ; thermoplastic composites</subject><ispartof>Advanced manufacturing. Polymer & composites science, 2020-04, Vol.6 (2), p.86-100</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-bce00a5efe3e3203663b1d59a83eb28534dbb4794da18a0b061e7ab5bf2b1c643</citedby><cites>FETCH-LOGICAL-c488t-bce00a5efe3e3203663b1d59a83eb28534dbb4794da18a0b061e7ab5bf2b1c643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/20550340.2020.1764236$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/20550340.2020.1764236$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27502,27924,27925,59143,59144</link.rule.ids></links><search><creatorcontrib>Aghababaei Tafreshi, Omid</creatorcontrib><creatorcontrib>Van Hoa, Suong</creatorcontrib><creatorcontrib>Shadmehri, Farjad</creatorcontrib><creatorcontrib>Hoang, Duc Minh</creatorcontrib><creatorcontrib>Rosca, Daniel</creatorcontrib><title>Determination of convective heat transfer coefficient for automated fiber placement (AFP) for thermoplastic composites using hot gas torch</title><title>Advanced manufacturing. Polymer & composites science</title><description>In heat transfer analysis of AFP process using a hot gas torch, the convective heat transfer which occurs between the hot gas flow generated by a torch nozzle and a composite substrate plays an important role in the heat transfer mechanism. In order to model the convective heat transfer, a local heat flux equation
is utilized where
is the energy flow per unit of area per unit of time, h is the convective heat transfer coefficient between the hot gas torch and the composite surface, and
accounts for the temperature difference between the two media. This coefficient h is dependent on various number of parameters such as nozzle geometry and its configuration relative to the surface of the substrate, type and configuration of the roller, gas flow rate, temperature of the gas, type of the gas etc. Researchers on the heat transfer analysis for automated composites manufacturing have used values of h that vary from 80 W/m
2
K to 2500 W/m
2
K. This large range gives rise to uncertainties in the determination of important behavior such as the temperature distributions, residual stresses, and deformations of the composite structures due to the manufacturing process. The reason for these large differences can be due to the differences in the process parameters in each of the studies. The process parameters can include the volume flow rate of the hot gas, the gas temperature, the distance between the nozzle exit and the surface of the composite plate, the angle of the torch with respect to the surface of the substrate etc. In addition, the value of the h coefficient may not be constant over the heating length of the process. The purpose of this paper is three fold: 1. To investigate the AFP process parameters that may affect h. 2. To investigate different methods for the determination of h, and 3. To develop a procedure for less-time-consuming determination of h for the purpose of analysis for residual stresses and deformations.</description><subject>automated fiber placement</subject><subject>Automation</subject><subject>Composite structures</subject><subject>Configurations</subject><subject>Convective heat transfer</subject><subject>Convective heat transfer coefficient</subject><subject>Deformation</subject><subject>Energy flow</subject><subject>Fiber placement</subject><subject>Flow velocity</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>impinging jet heat transfer</subject><subject>Nozzle geometry</subject><subject>Polymer matrix composites</subject><subject>Process parameters</subject><subject>Residual stress</subject><subject>Substrates</subject><subject>Temperature gradients</subject><subject>thermoplastic composites</subject><issn>2055-0340</issn><issn>2055-0359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1uFDEQhEcIJKKQR0CyxAUOm7R_ZsZzIwqERIoEBzhbbU9716ud8WJ7E-UVeGo82ZAjJ1tV1Z9brqZ5z-Gcg4YLAW0LUsG5AFGlvlNCdq-ak0VfgWyH1y93BW-bs5y3AMB131f1pPnzhQqlKcxYQpxZ9MzF-Z5cCffENoSFlYRz9pSqQd4HF2guzMfE8FDihIVG5oOt_n6HjqbF_Xh5_ePTU6ZsKjxWJ5fgKmHaxxwKZXbIYV6zTSxsjZmVmNzmXfPG4y7T2fN52vy6_vrz6mZ19_3b7dXl3coprcvKOgLAljxJkgJk10nLx3ZALckK3Uo1Wqv6QY3INYKFjlOPtrVeWO46JU-b2yN3jLg1-xQmTI8mYjBPQkxrg6muuyMjW0uC93rwSqtOE3rORxgHrUdw3i-sD0fWPsXfB8rFbOMhzXV9IxTvRdcNADXVHlMuxZwT-ZdXOZilRfOvRbO0aJ5brHOfj3Nhrp854UNMu9EUfNzF5GstLmQj_4_4C504pXI</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Aghababaei Tafreshi, Omid</creator><creator>Van Hoa, Suong</creator><creator>Shadmehri, Farjad</creator><creator>Hoang, Duc Minh</creator><creator>Rosca, Daniel</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JG9</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200402</creationdate><title>Determination of convective heat transfer coefficient for automated fiber placement (AFP) for thermoplastic composites using hot gas torch</title><author>Aghababaei Tafreshi, Omid ; Van Hoa, Suong ; Shadmehri, Farjad ; Hoang, Duc Minh ; Rosca, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-bce00a5efe3e3203663b1d59a83eb28534dbb4794da18a0b061e7ab5bf2b1c643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>automated fiber placement</topic><topic>Automation</topic><topic>Composite structures</topic><topic>Configurations</topic><topic>Convective heat transfer</topic><topic>Convective heat transfer coefficient</topic><topic>Deformation</topic><topic>Energy flow</topic><topic>Fiber placement</topic><topic>Flow velocity</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>impinging jet heat transfer</topic><topic>Nozzle geometry</topic><topic>Polymer matrix composites</topic><topic>Process parameters</topic><topic>Residual stress</topic><topic>Substrates</topic><topic>Temperature gradients</topic><topic>thermoplastic composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghababaei Tafreshi, Omid</creatorcontrib><creatorcontrib>Van Hoa, Suong</creatorcontrib><creatorcontrib>Shadmehri, Farjad</creatorcontrib><creatorcontrib>Hoang, Duc Minh</creatorcontrib><creatorcontrib>Rosca, Daniel</creatorcontrib><collection>Access via Taylor & Francis (Open Access Collection)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Materials Research Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced manufacturing. Polymer & composites science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghababaei Tafreshi, Omid</au><au>Van Hoa, Suong</au><au>Shadmehri, Farjad</au><au>Hoang, Duc Minh</au><au>Rosca, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of convective heat transfer coefficient for automated fiber placement (AFP) for thermoplastic composites using hot gas torch</atitle><jtitle>Advanced manufacturing. Polymer & composites science</jtitle><date>2020-04-02</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>86</spage><epage>100</epage><pages>86-100</pages><issn>2055-0340</issn><eissn>2055-0359</eissn><abstract>In heat transfer analysis of AFP process using a hot gas torch, the convective heat transfer which occurs between the hot gas flow generated by a torch nozzle and a composite substrate plays an important role in the heat transfer mechanism. In order to model the convective heat transfer, a local heat flux equation
is utilized where
is the energy flow per unit of area per unit of time, h is the convective heat transfer coefficient between the hot gas torch and the composite surface, and
accounts for the temperature difference between the two media. This coefficient h is dependent on various number of parameters such as nozzle geometry and its configuration relative to the surface of the substrate, type and configuration of the roller, gas flow rate, temperature of the gas, type of the gas etc. Researchers on the heat transfer analysis for automated composites manufacturing have used values of h that vary from 80 W/m
2
K to 2500 W/m
2
K. This large range gives rise to uncertainties in the determination of important behavior such as the temperature distributions, residual stresses, and deformations of the composite structures due to the manufacturing process. The reason for these large differences can be due to the differences in the process parameters in each of the studies. The process parameters can include the volume flow rate of the hot gas, the gas temperature, the distance between the nozzle exit and the surface of the composite plate, the angle of the torch with respect to the surface of the substrate etc. In addition, the value of the h coefficient may not be constant over the heating length of the process. The purpose of this paper is three fold: 1. To investigate the AFP process parameters that may affect h. 2. To investigate different methods for the determination of h, and 3. To develop a procedure for less-time-consuming determination of h for the purpose of analysis for residual stresses and deformations.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/20550340.2020.1764236</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0340 |
ispartof | Advanced manufacturing. Polymer & composites science, 2020-04, Vol.6 (2), p.86-100 |
issn | 2055-0340 2055-0359 |
language | eng |
recordid | cdi_crossref_primary_10_1080_20550340_2020_1764236 |
source | DOAJ Directory of Open Access Journals; Maney Open Access and freely available journals; Access via Taylor & Francis (Open Access Collection) |
subjects | automated fiber placement Automation Composite structures Configurations Convective heat transfer Convective heat transfer coefficient Deformation Energy flow Fiber placement Flow velocity Gas flow Gas temperature Heat flux Heat transfer Heat transfer coefficients impinging jet heat transfer Nozzle geometry Polymer matrix composites Process parameters Residual stress Substrates Temperature gradients thermoplastic composites |
title | Determination of convective heat transfer coefficient for automated fiber placement (AFP) for thermoplastic composites using hot gas torch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20convective%20heat%20transfer%20coefficient%20for%20automated%20fiber%20placement%20(AFP)%20for%20thermoplastic%20composites%20using%20hot%20gas%20torch&rft.jtitle=Advanced%20manufacturing.%20Polymer%20&%20composites%20science&rft.au=Aghababaei%20Tafreshi,%20Omid&rft.date=2020-04-02&rft.volume=6&rft.issue=2&rft.spage=86&rft.epage=100&rft.pages=86-100&rft.issn=2055-0340&rft.eissn=2055-0359&rft_id=info:doi/10.1080/20550340.2020.1764236&rft_dat=%3Cproquest_cross%3E2417266900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417266900&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_35be21789f48468eaf11d0d988d0cff4&rfr_iscdi=true |