Modelling and forecasting daily surgical case volume using time series analysis
Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, a...
Gespeichert in:
Veröffentlicht in: | Health systems 2018-05, Vol.7 (2), p.111-119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 2 |
container_start_page | 111 |
container_title | Health systems |
container_volume | 7 |
creator | Zinouri, Nazanin Taaffe, Kevin M. Neyens, David M. |
description | Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules. |
doi_str_mv | 10.1080/20476965.2017.1390185 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20476965_2017_1390185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31214342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMottQ-grIv0JpzsjeiFE9Q6Y1ehzTJ1ki6W5JtZd_eLD2gN85NJjP__w98AFwjOEVQwlsMqeAlZ1MMkZgiUkIk2RkY9vMJLwU5P_WcDcA4pS-YSzKMOboEA4IwooTiIVi8NdaF4OtVoWtbVE10Rqe2_1vtQ1ekbVx5o0ORx67YNWG7dsU29YLW5za56F3KZh265NMVuKh0SG58eEfg4-nxffYymS-eX2cP84mhXLYTowlhmDvhoDFL40pXalgKIRhFEi-5kYhQa6uSW15KbhhyDAuzFJpRZyUlI3C3z91sl2tnjavbqIPaRL_WsVON9urvpvafatXsFKcMSyJzANsHmNikFF118iKoesjqCFn1kNUBcvbd_D58ch2RZsH9XuDrTHOtv5sYrGp1F5pYRV0bn7L43xs_4gKNvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling and forecasting daily surgical case volume using time series analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zinouri, Nazanin ; Taaffe, Kevin M. ; Neyens, David M.</creator><creatorcontrib>Zinouri, Nazanin ; Taaffe, Kevin M. ; Neyens, David M.</creatorcontrib><description>Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules.</description><identifier>ISSN: 2047-6965</identifier><identifier>EISSN: 2047-6973</identifier><identifier>DOI: 10.1080/20476965.2017.1390185</identifier><identifier>PMID: 31214342</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>ARIMA modelling ; forecasting ; perioperative Systems ; seasonality ; surgical case volume ; Time series analysis</subject><ispartof>Health systems, 2018-05, Vol.7 (2), p.111-119</ispartof><rights>Operational Research Society 2018 2018</rights><rights>Operational Research Society 2018 2018 Operational Research Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</citedby><cites>FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452838/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452838/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31214342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zinouri, Nazanin</creatorcontrib><creatorcontrib>Taaffe, Kevin M.</creatorcontrib><creatorcontrib>Neyens, David M.</creatorcontrib><title>Modelling and forecasting daily surgical case volume using time series analysis</title><title>Health systems</title><addtitle>Health Syst (Basingstoke)</addtitle><description>Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules.</description><subject>ARIMA modelling</subject><subject>forecasting</subject><subject>perioperative Systems</subject><subject>seasonality</subject><subject>surgical case volume</subject><subject>Time series analysis</subject><issn>2047-6965</issn><issn>2047-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMottQ-grIv0JpzsjeiFE9Q6Y1ehzTJ1ki6W5JtZd_eLD2gN85NJjP__w98AFwjOEVQwlsMqeAlZ1MMkZgiUkIk2RkY9vMJLwU5P_WcDcA4pS-YSzKMOboEA4IwooTiIVi8NdaF4OtVoWtbVE10Rqe2_1vtQ1ekbVx5o0ORx67YNWG7dsU29YLW5za56F3KZh265NMVuKh0SG58eEfg4-nxffYymS-eX2cP84mhXLYTowlhmDvhoDFL40pXalgKIRhFEi-5kYhQa6uSW15KbhhyDAuzFJpRZyUlI3C3z91sl2tnjavbqIPaRL_WsVON9urvpvafatXsFKcMSyJzANsHmNikFF118iKoesjqCFn1kNUBcvbd_D58ch2RZsH9XuDrTHOtv5sYrGp1F5pYRV0bn7L43xs_4gKNvA</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Zinouri, Nazanin</creator><creator>Taaffe, Kevin M.</creator><creator>Neyens, David M.</creator><general>Taylor & Francis</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180504</creationdate><title>Modelling and forecasting daily surgical case volume using time series analysis</title><author>Zinouri, Nazanin ; Taaffe, Kevin M. ; Neyens, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ARIMA modelling</topic><topic>forecasting</topic><topic>perioperative Systems</topic><topic>seasonality</topic><topic>surgical case volume</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zinouri, Nazanin</creatorcontrib><creatorcontrib>Taaffe, Kevin M.</creatorcontrib><creatorcontrib>Neyens, David M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zinouri, Nazanin</au><au>Taaffe, Kevin M.</au><au>Neyens, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and forecasting daily surgical case volume using time series analysis</atitle><jtitle>Health systems</jtitle><addtitle>Health Syst (Basingstoke)</addtitle><date>2018-05-04</date><risdate>2018</risdate><volume>7</volume><issue>2</issue><spage>111</spage><epage>119</epage><pages>111-119</pages><issn>2047-6965</issn><eissn>2047-6973</eissn><abstract>Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>31214342</pmid><doi>10.1080/20476965.2017.1390185</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-6965 |
ispartof | Health systems, 2018-05, Vol.7 (2), p.111-119 |
issn | 2047-6965 2047-6973 |
language | eng |
recordid | cdi_crossref_primary_10_1080_20476965_2017_1390185 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | ARIMA modelling forecasting perioperative Systems seasonality surgical case volume Time series analysis |
title | Modelling and forecasting daily surgical case volume using time series analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20forecasting%20daily%20surgical%20case%20volume%20using%20time%20series%20analysis&rft.jtitle=Health%20systems&rft.au=Zinouri,%20Nazanin&rft.date=2018-05-04&rft.volume=7&rft.issue=2&rft.spage=111&rft.epage=119&rft.pages=111-119&rft.issn=2047-6965&rft.eissn=2047-6973&rft_id=info:doi/10.1080/20476965.2017.1390185&rft_dat=%3Cpubmed_cross%3E31214342%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31214342&rfr_iscdi=true |