Modelling and forecasting daily surgical case volume using time series analysis

Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Health systems 2018-05, Vol.7 (2), p.111-119
Hauptverfasser: Zinouri, Nazanin, Taaffe, Kevin M., Neyens, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 111
container_title Health systems
container_volume 7
creator Zinouri, Nazanin
Taaffe, Kevin M.
Neyens, David M.
description Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules.
doi_str_mv 10.1080/20476965.2017.1390185
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_20476965_2017_1390185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31214342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMottQ-grIv0JpzsjeiFE9Q6Y1ehzTJ1ki6W5JtZd_eLD2gN85NJjP__w98AFwjOEVQwlsMqeAlZ1MMkZgiUkIk2RkY9vMJLwU5P_WcDcA4pS-YSzKMOboEA4IwooTiIVi8NdaF4OtVoWtbVE10Rqe2_1vtQ1ekbVx5o0ORx67YNWG7dsU29YLW5za56F3KZh265NMVuKh0SG58eEfg4-nxffYymS-eX2cP84mhXLYTowlhmDvhoDFL40pXalgKIRhFEi-5kYhQa6uSW15KbhhyDAuzFJpRZyUlI3C3z91sl2tnjavbqIPaRL_WsVON9urvpvafatXsFKcMSyJzANsHmNikFF118iKoesjqCFn1kNUBcvbd_D58ch2RZsH9XuDrTHOtv5sYrGp1F5pYRV0bn7L43xs_4gKNvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling and forecasting daily surgical case volume using time series analysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zinouri, Nazanin ; Taaffe, Kevin M. ; Neyens, David M.</creator><creatorcontrib>Zinouri, Nazanin ; Taaffe, Kevin M. ; Neyens, David M.</creatorcontrib><description>Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules.</description><identifier>ISSN: 2047-6965</identifier><identifier>EISSN: 2047-6973</identifier><identifier>DOI: 10.1080/20476965.2017.1390185</identifier><identifier>PMID: 31214342</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>ARIMA modelling ; forecasting ; perioperative Systems ; seasonality ; surgical case volume ; Time series analysis</subject><ispartof>Health systems, 2018-05, Vol.7 (2), p.111-119</ispartof><rights>Operational Research Society 2018 2018</rights><rights>Operational Research Society 2018 2018 Operational Research Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</citedby><cites>FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452838/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6452838/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31214342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zinouri, Nazanin</creatorcontrib><creatorcontrib>Taaffe, Kevin M.</creatorcontrib><creatorcontrib>Neyens, David M.</creatorcontrib><title>Modelling and forecasting daily surgical case volume using time series analysis</title><title>Health systems</title><addtitle>Health Syst (Basingstoke)</addtitle><description>Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules.</description><subject>ARIMA modelling</subject><subject>forecasting</subject><subject>perioperative Systems</subject><subject>seasonality</subject><subject>surgical case volume</subject><subject>Time series analysis</subject><issn>2047-6965</issn><issn>2047-6973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMottQ-grIv0JpzsjeiFE9Q6Y1ehzTJ1ki6W5JtZd_eLD2gN85NJjP__w98AFwjOEVQwlsMqeAlZ1MMkZgiUkIk2RkY9vMJLwU5P_WcDcA4pS-YSzKMOboEA4IwooTiIVi8NdaF4OtVoWtbVE10Rqe2_1vtQ1ekbVx5o0ORx67YNWG7dsU29YLW5za56F3KZh265NMVuKh0SG58eEfg4-nxffYymS-eX2cP84mhXLYTowlhmDvhoDFL40pXalgKIRhFEi-5kYhQa6uSW15KbhhyDAuzFJpRZyUlI3C3z91sl2tnjavbqIPaRL_WsVON9urvpvafatXsFKcMSyJzANsHmNikFF118iKoesjqCFn1kNUBcvbd_D58ch2RZsH9XuDrTHOtv5sYrGp1F5pYRV0bn7L43xs_4gKNvA</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Zinouri, Nazanin</creator><creator>Taaffe, Kevin M.</creator><creator>Neyens, David M.</creator><general>Taylor &amp; Francis</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20180504</creationdate><title>Modelling and forecasting daily surgical case volume using time series analysis</title><author>Zinouri, Nazanin ; Taaffe, Kevin M. ; Neyens, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-ca33526e7e0ccbce9e9a0977754182b6c8134ddf96d6986c51e527cb7a54ed843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ARIMA modelling</topic><topic>forecasting</topic><topic>perioperative Systems</topic><topic>seasonality</topic><topic>surgical case volume</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zinouri, Nazanin</creatorcontrib><creatorcontrib>Taaffe, Kevin M.</creatorcontrib><creatorcontrib>Neyens, David M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Health systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zinouri, Nazanin</au><au>Taaffe, Kevin M.</au><au>Neyens, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling and forecasting daily surgical case volume using time series analysis</atitle><jtitle>Health systems</jtitle><addtitle>Health Syst (Basingstoke)</addtitle><date>2018-05-04</date><risdate>2018</risdate><volume>7</volume><issue>2</issue><spage>111</spage><epage>119</epage><pages>111-119</pages><issn>2047-6965</issn><eissn>2047-6973</eissn><abstract>Hospitals and outpatient surgery centres are often plagued by a recurring staff management question: "How can we plan our nursing schedule weeks in advance, not knowing how many and when patients will require surgery?" Demand for surgery is driven by patient needs, physician constraints, and weekly or seasonal fluctuations. With all of these factors embedded into historical surgical volume, we use time series analysis methods to forecast daily surgical case volumes, which can be extremely valuable for estimating workload and labour expenses. Seasonal Autoregressive Integrated Moving Average (SARIMA) modelling is used to develop a statistical prediction model that provides short-term forecasts of daily surgical demand. We used data from a Level 1 Trauma Centre to build and evaluate the model. Our results suggest that the proposed SARIMA model can be useful for estimating surgical case volumes 2-4 weeks prior to the day of surgery, which can support robust and reliable staff schedules.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>31214342</pmid><doi>10.1080/20476965.2017.1390185</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-6965
ispartof Health systems, 2018-05, Vol.7 (2), p.111-119
issn 2047-6965
2047-6973
language eng
recordid cdi_crossref_primary_10_1080_20476965_2017_1390185
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects ARIMA modelling
forecasting
perioperative Systems
seasonality
surgical case volume
Time series analysis
title Modelling and forecasting daily surgical case volume using time series analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20and%20forecasting%20daily%20surgical%20case%20volume%20using%20time%20series%20analysis&rft.jtitle=Health%20systems&rft.au=Zinouri,%20Nazanin&rft.date=2018-05-04&rft.volume=7&rft.issue=2&rft.spage=111&rft.epage=119&rft.pages=111-119&rft.issn=2047-6965&rft.eissn=2047-6973&rft_id=info:doi/10.1080/20476965.2017.1390185&rft_dat=%3Cpubmed_cross%3E31214342%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31214342&rfr_iscdi=true