Applications of artificial intelligence (AI) in managing food quality and ensuring global food security
The food industry uses artificial intelligence (AI) to enhance food quality and security while proposing significant capital savings and resource optimization. Additionally, understanding machine learning (ML) techniques is essential for their effectiveness. Therefore, the gap lies in examining how...
Gespeichert in:
Veröffentlicht in: | CYTA: journal of food 2024-12, Vol.22 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | CYTA: journal of food |
container_volume | 22 |
creator | Ikram, Ali Mehmood, Hassan Arshad, Muhammad Tayyab Rasheed, Areeba Noreen, Sana Gnedeka, Kodjo Théodore |
description | The food industry uses artificial intelligence (AI) to enhance food quality and security while proposing significant capital savings and resource optimization. Additionally, understanding machine learning (ML) techniques is essential for their effectiveness. Therefore, the gap lies in examining how industrial automation plays a crucial role in successfully implementing this new technology. To address this gap, this review explores AI's potential to significantly enhance food safety by creating a more transparent supply chain management system. Therefore, the primary focus is exploring potential AI applications, such as artificial neural networks (ANN) and convolutional neural networks (CNN), for detecting food and agricultural product quality. The primary goal of utilizing these AI applications is to reduce human intervention and effort. These methodologies have advantages and disadvantages regarding theoretical knowledge and model interpretation. |
doi_str_mv | 10.1080/19476337.2024.2393287 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19476337_2024_2393287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7b4cc2d635e44995b6956e43190011d8</doaj_id><sourcerecordid>3146645906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-4422ff0827bf63cc22cd023d6400e876ad5a518a6440e435b5652b22d10ea5143</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1oIGnan1AQdJMuZqK37V2H0CYDgWyatbjWw2jQSBPJpsy_r5xJs8giK4lzv3uurk7TfCN4TXCHb0jPW8lYu6aY8jVlPaNde9ZcLvpKMi4-vd1Ze9F8LmWHsRQtlZfNuDkcgtcw-RQLSg5Bnrzz2kNAPk42BD_aqC263mx_VAXtIcLo44hcSgY9zxD8dEQQDbKxzHmpjCENtf0FKFZXcTp-ac4dhGK_vp5XzdPvX39u71cPj3fb283DSjNJpxXnlDqHO9oOTjKtKdUGU2Ykx9h2rQQjQJAOJOfYciYGIQUdKDUE21rg7KrZnnxNgp06ZL-HfFQJvHoRUh7VsqEOVrUDrwOMZMJy3vdikL2Q1ZT0GBNiuup1ffI65PQ82zKpvS-6fglEm-aiGBGcSs4Yrej3d-guzTnWTSvFpeSix7JS4kTpnErJ1r09kGC1RKn-R6mWKNVrlLXv56nPR5fyHv6mHIya4BhSdhmi9suYDy3-AV0CozE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146645906</pqid></control><display><type>article</type><title>Applications of artificial intelligence (AI) in managing food quality and ensuring global food security</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Ikram, Ali ; Mehmood, Hassan ; Arshad, Muhammad Tayyab ; Rasheed, Areeba ; Noreen, Sana ; Gnedeka, Kodjo Théodore</creator><creatorcontrib>Ikram, Ali ; Mehmood, Hassan ; Arshad, Muhammad Tayyab ; Rasheed, Areeba ; Noreen, Sana ; Gnedeka, Kodjo Théodore</creatorcontrib><description>The food industry uses artificial intelligence (AI) to enhance food quality and security while proposing significant capital savings and resource optimization. Additionally, understanding machine learning (ML) techniques is essential for their effectiveness. Therefore, the gap lies in examining how industrial automation plays a crucial role in successfully implementing this new technology. To address this gap, this review explores AI's potential to significantly enhance food safety by creating a more transparent supply chain management system. Therefore, the primary focus is exploring potential AI applications, such as artificial neural networks (ANN) and convolutional neural networks (CNN), for detecting food and agricultural product quality. The primary goal of utilizing these AI applications is to reduce human intervention and effort. These methodologies have advantages and disadvantages regarding theoretical knowledge and model interpretation.</description><identifier>ISSN: 1947-6337</identifier><identifier>ISSN: 1947-6345</identifier><identifier>EISSN: 1947-6345</identifier><identifier>DOI: 10.1080/19476337.2024.2393287</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Agriculture ; Artificial intelligence ; Artificial neural networks ; Automation ; capital ; Decision making ; Food chains ; Food industry ; Food quality ; Food safety ; Food security ; Food supply ; humans ; Machine learning ; management systems ; Neural networks ; Safety management ; supply chain management ; Supply chains</subject><ispartof>CYTA: journal of food, 2024-12, Vol.22 (1)</ispartof><rights>2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024</rights><rights>2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c362t-4422ff0827bf63cc22cd023d6400e876ad5a518a6440e435b5652b22d10ea5143</cites><orcidid>0000-0002-2893-4249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/19476337.2024.2393287$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/19476337.2024.2393287$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27481,27903,27904,59119,59120</link.rule.ids></links><search><creatorcontrib>Ikram, Ali</creatorcontrib><creatorcontrib>Mehmood, Hassan</creatorcontrib><creatorcontrib>Arshad, Muhammad Tayyab</creatorcontrib><creatorcontrib>Rasheed, Areeba</creatorcontrib><creatorcontrib>Noreen, Sana</creatorcontrib><creatorcontrib>Gnedeka, Kodjo Théodore</creatorcontrib><title>Applications of artificial intelligence (AI) in managing food quality and ensuring global food security</title><title>CYTA: journal of food</title><description>The food industry uses artificial intelligence (AI) to enhance food quality and security while proposing significant capital savings and resource optimization. Additionally, understanding machine learning (ML) techniques is essential for their effectiveness. Therefore, the gap lies in examining how industrial automation plays a crucial role in successfully implementing this new technology. To address this gap, this review explores AI's potential to significantly enhance food safety by creating a more transparent supply chain management system. Therefore, the primary focus is exploring potential AI applications, such as artificial neural networks (ANN) and convolutional neural networks (CNN), for detecting food and agricultural product quality. The primary goal of utilizing these AI applications is to reduce human intervention and effort. These methodologies have advantages and disadvantages regarding theoretical knowledge and model interpretation.</description><subject>Agriculture</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>capital</subject><subject>Decision making</subject><subject>Food chains</subject><subject>Food industry</subject><subject>Food quality</subject><subject>Food safety</subject><subject>Food security</subject><subject>Food supply</subject><subject>humans</subject><subject>Machine learning</subject><subject>management systems</subject><subject>Neural networks</subject><subject>Safety management</subject><subject>supply chain management</subject><subject>Supply chains</subject><issn>1947-6337</issn><issn>1947-6345</issn><issn>1947-6345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtr3DAUhU1oIGnan1AQdJMuZqK37V2H0CYDgWyatbjWw2jQSBPJpsy_r5xJs8giK4lzv3uurk7TfCN4TXCHb0jPW8lYu6aY8jVlPaNde9ZcLvpKMi4-vd1Ze9F8LmWHsRQtlZfNuDkcgtcw-RQLSg5Bnrzz2kNAPk42BD_aqC263mx_VAXtIcLo44hcSgY9zxD8dEQQDbKxzHmpjCENtf0FKFZXcTp-ac4dhGK_vp5XzdPvX39u71cPj3fb283DSjNJpxXnlDqHO9oOTjKtKdUGU2Ykx9h2rQQjQJAOJOfYciYGIQUdKDUE21rg7KrZnnxNgp06ZL-HfFQJvHoRUh7VsqEOVrUDrwOMZMJy3vdikL2Q1ZT0GBNiuup1ffI65PQ82zKpvS-6fglEm-aiGBGcSs4Yrej3d-guzTnWTSvFpeSix7JS4kTpnErJ1r09kGC1RKn-R6mWKNVrlLXv56nPR5fyHv6mHIya4BhSdhmi9suYDy3-AV0CozE</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Ikram, Ali</creator><creator>Mehmood, Hassan</creator><creator>Arshad, Muhammad Tayyab</creator><creator>Rasheed, Areeba</creator><creator>Noreen, Sana</creator><creator>Gnedeka, Kodjo Théodore</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7T7</scope><scope>7U7</scope><scope>7X2</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2893-4249</orcidid></search><sort><creationdate>20241231</creationdate><title>Applications of artificial intelligence (AI) in managing food quality and ensuring global food security</title><author>Ikram, Ali ; Mehmood, Hassan ; Arshad, Muhammad Tayyab ; Rasheed, Areeba ; Noreen, Sana ; Gnedeka, Kodjo Théodore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-4422ff0827bf63cc22cd023d6400e876ad5a518a6440e435b5652b22d10ea5143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>capital</topic><topic>Decision making</topic><topic>Food chains</topic><topic>Food industry</topic><topic>Food quality</topic><topic>Food safety</topic><topic>Food security</topic><topic>Food supply</topic><topic>humans</topic><topic>Machine learning</topic><topic>management systems</topic><topic>Neural networks</topic><topic>Safety management</topic><topic>supply chain management</topic><topic>Supply chains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikram, Ali</creatorcontrib><creatorcontrib>Mehmood, Hassan</creatorcontrib><creatorcontrib>Arshad, Muhammad Tayyab</creatorcontrib><creatorcontrib>Rasheed, Areeba</creatorcontrib><creatorcontrib>Noreen, Sana</creatorcontrib><creatorcontrib>Gnedeka, Kodjo Théodore</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>CYTA: journal of food</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikram, Ali</au><au>Mehmood, Hassan</au><au>Arshad, Muhammad Tayyab</au><au>Rasheed, Areeba</au><au>Noreen, Sana</au><au>Gnedeka, Kodjo Théodore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of artificial intelligence (AI) in managing food quality and ensuring global food security</atitle><jtitle>CYTA: journal of food</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>22</volume><issue>1</issue><issn>1947-6337</issn><issn>1947-6345</issn><eissn>1947-6345</eissn><abstract>The food industry uses artificial intelligence (AI) to enhance food quality and security while proposing significant capital savings and resource optimization. Additionally, understanding machine learning (ML) techniques is essential for their effectiveness. Therefore, the gap lies in examining how industrial automation plays a crucial role in successfully implementing this new technology. To address this gap, this review explores AI's potential to significantly enhance food safety by creating a more transparent supply chain management system. Therefore, the primary focus is exploring potential AI applications, such as artificial neural networks (ANN) and convolutional neural networks (CNN), for detecting food and agricultural product quality. The primary goal of utilizing these AI applications is to reduce human intervention and effort. These methodologies have advantages and disadvantages regarding theoretical knowledge and model interpretation.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/19476337.2024.2393287</doi><orcidid>https://orcid.org/0000-0002-2893-4249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1947-6337 |
ispartof | CYTA: journal of food, 2024-12, Vol.22 (1) |
issn | 1947-6337 1947-6345 1947-6345 |
language | eng |
recordid | cdi_crossref_primary_10_1080_19476337_2024_2393287 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Agriculture Artificial intelligence Artificial neural networks Automation capital Decision making Food chains Food industry Food quality Food safety Food security Food supply humans Machine learning management systems Neural networks Safety management supply chain management Supply chains |
title | Applications of artificial intelligence (AI) in managing food quality and ensuring global food security |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20artificial%20intelligence%20(AI)%20in%20managing%20food%20quality%20and%20ensuring%20global%20food%20security&rft.jtitle=CYTA:%20journal%20of%20food&rft.au=Ikram,%20Ali&rft.date=2024-12-31&rft.volume=22&rft.issue=1&rft.issn=1947-6337&rft.eissn=1947-6345&rft_id=info:doi/10.1080/19476337.2024.2393287&rft_dat=%3Cproquest_cross%3E3146645906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146645906&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_7b4cc2d635e44995b6956e43190011d8&rfr_iscdi=true |