Nanoindentation in elastoplastic materials: insights from numerical simulations

Finite element simulations of nanoindentation were performed on an elastoplastic material using Berkovich and conical indenters to investigate the effects of geometry on the load-displacement response of the material. The Berkovich indenter, widely used in nanoindentation experiments, is typically s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of smart and nano materials 2010-05, Vol.1 (2), p.95-114
Hauptverfasser: Moore, Steven W., Manzari, Majid T., Shen, Yin-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 2
container_start_page 95
container_title International journal of smart and nano materials
container_volume 1
creator Moore, Steven W.
Manzari, Majid T.
Shen, Yin-Lin
description Finite element simulations of nanoindentation were performed on an elastoplastic material using Berkovich and conical indenters to investigate the effects of geometry on the load-displacement response of the material. The Berkovich indenter, widely used in nanoindentation experiments, is typically simplified to a theoretically equivalent 70.3° conical indenter for numerical simulations, which allows for a less computationally intensive two-dimensional (2D) axisymmetric analysis. Previous studies into the validity of this equivalence assumption for indentations in elastoplastic materials have varying conclusions. Using 2D and 3D finite element simulations, the present study investigates the response of elastoplastic materials, obeying a combined isotropic and kinematic hardening, to indentation with conical and Berkovich indenters. Simulations show that there is a clear difference in the load-displacement response of the selected material to the two indenters. The Berkovich geometry is found to produce a more localized pattern of contact stresses and plastic strains, leading to a smaller mobilized force for the same magnitude of displacement. To further validate the numerical simulations, experimental results of nanoindentation into an aluminium specimen were compared to elastoplastic finite element simulation results. Comparisons suggest that machining-induced residual stresses have likely affected the experimental results.
doi_str_mv 10.1080/19475411003589889
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_19475411003589889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_19475411003589889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-388b2f681b9307932e6e7ebd1a26447444d7c57fed687730e86ad42c47f5ab703</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxoMoWGofwNu-wGr-7SYRL1LUCsVeFLwts9lEI7tJSVK0b-_WipcizmFmmG9-M_AhdE7wBcESXxLFRcUJwZhVUkmpjtBkNysrTl-Of3tCTtEspXc8BqMKV_UErR7BB-c74zNkF3zhfGF6SDmsd9npYoBsooM-XY1acq9vORU2hqHwm2EUNPRFcsOm_8bTGTqx466Z_dQper67fZovyuXq_mF-syw1kyqXTMqW2lqSVjEsFKOmNsK0HQFacy44553QlbCmq6UQDBtZQ8ep5sJW0ArMpojs7-oYUorGNuvoBojbhuBmZ0pzYMrIiD3jvA1xgI8Q-67JsO1DtBG8dumQavJnHsnrf0n29-Mvbfx7GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoindentation in elastoplastic materials: insights from numerical simulations</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Moore, Steven W. ; Manzari, Majid T. ; Shen, Yin-Lin</creator><creatorcontrib>Moore, Steven W. ; Manzari, Majid T. ; Shen, Yin-Lin</creatorcontrib><description>Finite element simulations of nanoindentation were performed on an elastoplastic material using Berkovich and conical indenters to investigate the effects of geometry on the load-displacement response of the material. The Berkovich indenter, widely used in nanoindentation experiments, is typically simplified to a theoretically equivalent 70.3° conical indenter for numerical simulations, which allows for a less computationally intensive two-dimensional (2D) axisymmetric analysis. Previous studies into the validity of this equivalence assumption for indentations in elastoplastic materials have varying conclusions. Using 2D and 3D finite element simulations, the present study investigates the response of elastoplastic materials, obeying a combined isotropic and kinematic hardening, to indentation with conical and Berkovich indenters. Simulations show that there is a clear difference in the load-displacement response of the selected material to the two indenters. The Berkovich geometry is found to produce a more localized pattern of contact stresses and plastic strains, leading to a smaller mobilized force for the same magnitude of displacement. To further validate the numerical simulations, experimental results of nanoindentation into an aluminium specimen were compared to elastoplastic finite element simulation results. Comparisons suggest that machining-induced residual stresses have likely affected the experimental results.</description><identifier>ISSN: 1947-5411</identifier><identifier>EISSN: 1947-542X</identifier><identifier>DOI: 10.1080/19475411003589889</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>elastoplasticity ; finite element analysis ; nanoindentation ; tip geometry</subject><ispartof>International journal of smart and nano materials, 2010-05, Vol.1 (2), p.95-114</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-388b2f681b9307932e6e7ebd1a26447444d7c57fed687730e86ad42c47f5ab703</citedby><cites>FETCH-LOGICAL-c389t-388b2f681b9307932e6e7ebd1a26447444d7c57fed687730e86ad42c47f5ab703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Moore, Steven W.</creatorcontrib><creatorcontrib>Manzari, Majid T.</creatorcontrib><creatorcontrib>Shen, Yin-Lin</creatorcontrib><title>Nanoindentation in elastoplastic materials: insights from numerical simulations</title><title>International journal of smart and nano materials</title><description>Finite element simulations of nanoindentation were performed on an elastoplastic material using Berkovich and conical indenters to investigate the effects of geometry on the load-displacement response of the material. The Berkovich indenter, widely used in nanoindentation experiments, is typically simplified to a theoretically equivalent 70.3° conical indenter for numerical simulations, which allows for a less computationally intensive two-dimensional (2D) axisymmetric analysis. Previous studies into the validity of this equivalence assumption for indentations in elastoplastic materials have varying conclusions. Using 2D and 3D finite element simulations, the present study investigates the response of elastoplastic materials, obeying a combined isotropic and kinematic hardening, to indentation with conical and Berkovich indenters. Simulations show that there is a clear difference in the load-displacement response of the selected material to the two indenters. The Berkovich geometry is found to produce a more localized pattern of contact stresses and plastic strains, leading to a smaller mobilized force for the same magnitude of displacement. To further validate the numerical simulations, experimental results of nanoindentation into an aluminium specimen were compared to elastoplastic finite element simulation results. Comparisons suggest that machining-induced residual stresses have likely affected the experimental results.</description><subject>elastoplasticity</subject><subject>finite element analysis</subject><subject>nanoindentation</subject><subject>tip geometry</subject><issn>1947-5411</issn><issn>1947-542X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxoMoWGofwNu-wGr-7SYRL1LUCsVeFLwts9lEI7tJSVK0b-_WipcizmFmmG9-M_AhdE7wBcESXxLFRcUJwZhVUkmpjtBkNysrTl-Of3tCTtEspXc8BqMKV_UErR7BB-c74zNkF3zhfGF6SDmsd9npYoBsooM-XY1acq9vORU2hqHwm2EUNPRFcsOm_8bTGTqx466Z_dQper67fZovyuXq_mF-syw1kyqXTMqW2lqSVjEsFKOmNsK0HQFacy44553QlbCmq6UQDBtZQ8ep5sJW0ArMpojs7-oYUorGNuvoBojbhuBmZ0pzYMrIiD3jvA1xgI8Q-67JsO1DtBG8dumQavJnHsnrf0n29-Mvbfx7GA</recordid><startdate>20100518</startdate><enddate>20100518</enddate><creator>Moore, Steven W.</creator><creator>Manzari, Majid T.</creator><creator>Shen, Yin-Lin</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100518</creationdate><title>Nanoindentation in elastoplastic materials: insights from numerical simulations</title><author>Moore, Steven W. ; Manzari, Majid T. ; Shen, Yin-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-388b2f681b9307932e6e7ebd1a26447444d7c57fed687730e86ad42c47f5ab703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>elastoplasticity</topic><topic>finite element analysis</topic><topic>nanoindentation</topic><topic>tip geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Steven W.</creatorcontrib><creatorcontrib>Manzari, Majid T.</creatorcontrib><creatorcontrib>Shen, Yin-Lin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of smart and nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Steven W.</au><au>Manzari, Majid T.</au><au>Shen, Yin-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation in elastoplastic materials: insights from numerical simulations</atitle><jtitle>International journal of smart and nano materials</jtitle><date>2010-05-18</date><risdate>2010</risdate><volume>1</volume><issue>2</issue><spage>95</spage><epage>114</epage><pages>95-114</pages><issn>1947-5411</issn><eissn>1947-542X</eissn><abstract>Finite element simulations of nanoindentation were performed on an elastoplastic material using Berkovich and conical indenters to investigate the effects of geometry on the load-displacement response of the material. The Berkovich indenter, widely used in nanoindentation experiments, is typically simplified to a theoretically equivalent 70.3° conical indenter for numerical simulations, which allows for a less computationally intensive two-dimensional (2D) axisymmetric analysis. Previous studies into the validity of this equivalence assumption for indentations in elastoplastic materials have varying conclusions. Using 2D and 3D finite element simulations, the present study investigates the response of elastoplastic materials, obeying a combined isotropic and kinematic hardening, to indentation with conical and Berkovich indenters. Simulations show that there is a clear difference in the load-displacement response of the selected material to the two indenters. The Berkovich geometry is found to produce a more localized pattern of contact stresses and plastic strains, leading to a smaller mobilized force for the same magnitude of displacement. To further validate the numerical simulations, experimental results of nanoindentation into an aluminium specimen were compared to elastoplastic finite element simulation results. Comparisons suggest that machining-induced residual stresses have likely affected the experimental results.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/19475411003589889</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-5411
ispartof International journal of smart and nano materials, 2010-05, Vol.1 (2), p.95-114
issn 1947-5411
1947-542X
language eng
recordid cdi_crossref_primary_10_1080_19475411003589889
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects elastoplasticity
finite element analysis
nanoindentation
tip geometry
title Nanoindentation in elastoplastic materials: insights from numerical simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20in%20elastoplastic%20materials:%20insights%20from%20numerical%20simulations&rft.jtitle=International%20journal%20of%20smart%20and%20nano%20materials&rft.au=Moore,%20Steven%20W.&rft.date=2010-05-18&rft.volume=1&rft.issue=2&rft.spage=95&rft.epage=114&rft.pages=95-114&rft.issn=1947-5411&rft.eissn=1947-542X&rft_id=info:doi/10.1080/19475411003589889&rft_dat=%3Ccrossref_infor%3E10_1080_19475411003589889%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true