Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (II): Theoretical Analysis of Luminol Chemiluminescence Processes

The authors previously developed a flow injection type hydrogen peroxide detection system based on chemical photoluminescence spectroscopy. This system has the lowest detectable limit of 0.3 ppb. The relationships between the hydrogen peroxide concentration and luminous intensity were expressed as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear science and technology 2004-09, Vol.41 (9), p.898-906
Hauptverfasser: UCHIDA, Shunsuke, SATOH, Yoshiyuki, YAMASHIRO, Naoya, SATOH, Tomonori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 906
container_issue 9
container_start_page 898
container_title Journal of nuclear science and technology
container_volume 41
creator UCHIDA, Shunsuke
SATOH, Yoshiyuki
YAMASHIRO, Naoya
SATOH, Tomonori
description The authors previously developed a flow injection type hydrogen peroxide detection system based on chemical photoluminescence spectroscopy. This system has the lowest detectable limit of 0.3 ppb. The relationships between the hydrogen peroxide concentration and luminous intensity were expressed as a linear function and a quadratic function of the H 2 O 2 concentration. In the present study, the chemiluminescence processes were theoretically evaluated by analyzing the chain radical reactions to confirm the effect of major parameters on the chemiluminescent intensity and to understand the complex relationship between H 2 O 2 concentration and luminous intensity. Then delay in luminescence was empirically analyzed by calculating diffusion of chemical species in the sample water and mixed reagent solution. The calculated results showed dependencies of the chemiluminescent intensity on luminol concentration and pH of the mixed reagent were mainly determined by a balance between OH radical concentration and luminol concentration. Furthermore the presence of O 2 - radicals in the mixed reagent might explain the linear relation between chemiluminescent intensity and H 2 O 2 concentration at low values.
doi_str_mv 10.1080/18811248.2004.9715562
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_18811248_2004_9715562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16253241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-5bf00975fb6e27392ee134855396e634355279a693f3cd471c0c720a08639e4a3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_grAXQcHU_U5yU-pHCwV7UDyG7WZWV5Js2Y1o_r0JafHmaZiZ95mBB6FzSmaUZOSGZhmlTGQzRoiY5SmVUrEDNBnmybA4RBNCGEs45fQYncT42bdKqGyC1vfQQqhdo1vnG-wtXnRl8O_Q4DUE_-NKwK7Bb7pP4U2H5x9Qu-qrByAaaAzg4YAZ4Gt8uVxenaIjq6sIZ7s6Ra-PDy_zRbJ6flrO71aJYYS2idxYQvJU2o0ClvKcAVAuMil5rkBxwaVkaa5Vzi03pUipISZlRJNM8RyE5lMkx7sm-BgD2GIbXK1DV1BSDFqKvZZi0FLstPTcxchtdTS6skE3xsU_WDHJmaB97nbMucb6UOtvH6qyaHVX-bCH-P-vfgHEg3SP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (II): Theoretical Analysis of Luminol Chemiluminescence Processes</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>UCHIDA, Shunsuke ; SATOH, Yoshiyuki ; YAMASHIRO, Naoya ; SATOH, Tomonori</creator><creatorcontrib>UCHIDA, Shunsuke ; SATOH, Yoshiyuki ; YAMASHIRO, Naoya ; SATOH, Tomonori</creatorcontrib><description>The authors previously developed a flow injection type hydrogen peroxide detection system based on chemical photoluminescence spectroscopy. This system has the lowest detectable limit of 0.3 ppb. The relationships between the hydrogen peroxide concentration and luminous intensity were expressed as a linear function and a quadratic function of the H 2 O 2 concentration. In the present study, the chemiluminescence processes were theoretically evaluated by analyzing the chain radical reactions to confirm the effect of major parameters on the chemiluminescent intensity and to understand the complex relationship between H 2 O 2 concentration and luminous intensity. Then delay in luminescence was empirically analyzed by calculating diffusion of chemical species in the sample water and mixed reagent solution. The calculated results showed dependencies of the chemiluminescent intensity on luminol concentration and pH of the mixed reagent were mainly determined by a balance between OH radical concentration and luminol concentration. Furthermore the presence of O 2 - radicals in the mixed reagent might explain the linear relation between chemiluminescent intensity and H 2 O 2 concentration at low values.</description><identifier>ISSN: 0022-3131</identifier><identifier>EISSN: 1881-1248</identifier><identifier>DOI: 10.1080/18811248.2004.9715562</identifier><identifier>CODEN: JNSTAX</identifier><language>eng</language><publisher>Tokyo: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; chemiluminescence ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; hydrogen peroxide ; Installations for energy generation and conversion: thermal and electrical energy ; luminol ; Nuclear fuels ; rate equations ; stress radical reactions</subject><ispartof>Journal of nuclear science and technology, 2004-09, Vol.41 (9), p.898-906</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2004</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c201t-5bf00975fb6e27392ee134855396e634355279a693f3cd471c0c720a08639e4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16253241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>UCHIDA, Shunsuke</creatorcontrib><creatorcontrib>SATOH, Yoshiyuki</creatorcontrib><creatorcontrib>YAMASHIRO, Naoya</creatorcontrib><creatorcontrib>SATOH, Tomonori</creatorcontrib><title>Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (II): Theoretical Analysis of Luminol Chemiluminescence Processes</title><title>Journal of nuclear science and technology</title><description>The authors previously developed a flow injection type hydrogen peroxide detection system based on chemical photoluminescence spectroscopy. This system has the lowest detectable limit of 0.3 ppb. The relationships between the hydrogen peroxide concentration and luminous intensity were expressed as a linear function and a quadratic function of the H 2 O 2 concentration. In the present study, the chemiluminescence processes were theoretically evaluated by analyzing the chain radical reactions to confirm the effect of major parameters on the chemiluminescent intensity and to understand the complex relationship between H 2 O 2 concentration and luminous intensity. Then delay in luminescence was empirically analyzed by calculating diffusion of chemical species in the sample water and mixed reagent solution. The calculated results showed dependencies of the chemiluminescent intensity on luminol concentration and pH of the mixed reagent were mainly determined by a balance between OH radical concentration and luminol concentration. Furthermore the presence of O 2 - radicals in the mixed reagent might explain the linear relation between chemiluminescent intensity and H 2 O 2 concentration at low values.</description><subject>Applied sciences</subject><subject>chemiluminescence</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>hydrogen peroxide</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>luminol</subject><subject>Nuclear fuels</subject><subject>rate equations</subject><subject>stress radical reactions</subject><issn>0022-3131</issn><issn>1881-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_grAXQcHU_U5yU-pHCwV7UDyG7WZWV5Js2Y1o_r0JafHmaZiZ95mBB6FzSmaUZOSGZhmlTGQzRoiY5SmVUrEDNBnmybA4RBNCGEs45fQYncT42bdKqGyC1vfQQqhdo1vnG-wtXnRl8O_Q4DUE_-NKwK7Bb7pP4U2H5x9Qu-qrByAaaAzg4YAZ4Gt8uVxenaIjq6sIZ7s6Ra-PDy_zRbJ6flrO71aJYYS2idxYQvJU2o0ClvKcAVAuMil5rkBxwaVkaa5Vzi03pUipISZlRJNM8RyE5lMkx7sm-BgD2GIbXK1DV1BSDFqKvZZi0FLstPTcxchtdTS6skE3xsU_WDHJmaB97nbMucb6UOtvH6qyaHVX-bCH-P-vfgHEg3SP</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>UCHIDA, Shunsuke</creator><creator>SATOH, Yoshiyuki</creator><creator>YAMASHIRO, Naoya</creator><creator>SATOH, Tomonori</creator><general>Taylor &amp; Francis Group</general><general>Atomic Energy Society of Japan</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040901</creationdate><title>Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (II)</title><author>UCHIDA, Shunsuke ; SATOH, Yoshiyuki ; YAMASHIRO, Naoya ; SATOH, Tomonori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-5bf00975fb6e27392ee134855396e634355279a693f3cd471c0c720a08639e4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>chemiluminescence</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>hydrogen peroxide</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>luminol</topic><topic>Nuclear fuels</topic><topic>rate equations</topic><topic>stress radical reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UCHIDA, Shunsuke</creatorcontrib><creatorcontrib>SATOH, Yoshiyuki</creatorcontrib><creatorcontrib>YAMASHIRO, Naoya</creatorcontrib><creatorcontrib>SATOH, Tomonori</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of nuclear science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UCHIDA, Shunsuke</au><au>SATOH, Yoshiyuki</au><au>YAMASHIRO, Naoya</au><au>SATOH, Tomonori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (II): Theoretical Analysis of Luminol Chemiluminescence Processes</atitle><jtitle>Journal of nuclear science and technology</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>41</volume><issue>9</issue><spage>898</spage><epage>906</epage><pages>898-906</pages><issn>0022-3131</issn><eissn>1881-1248</eissn><coden>JNSTAX</coden><abstract>The authors previously developed a flow injection type hydrogen peroxide detection system based on chemical photoluminescence spectroscopy. This system has the lowest detectable limit of 0.3 ppb. The relationships between the hydrogen peroxide concentration and luminous intensity were expressed as a linear function and a quadratic function of the H 2 O 2 concentration. In the present study, the chemiluminescence processes were theoretically evaluated by analyzing the chain radical reactions to confirm the effect of major parameters on the chemiluminescent intensity and to understand the complex relationship between H 2 O 2 concentration and luminous intensity. Then delay in luminescence was empirically analyzed by calculating diffusion of chemical species in the sample water and mixed reagent solution. The calculated results showed dependencies of the chemiluminescent intensity on luminol concentration and pH of the mixed reagent were mainly determined by a balance between OH radical concentration and luminol concentration. Furthermore the presence of O 2 - radicals in the mixed reagent might explain the linear relation between chemiluminescent intensity and H 2 O 2 concentration at low values.</abstract><cop>Tokyo</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/18811248.2004.9715562</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3131
ispartof Journal of nuclear science and technology, 2004-09, Vol.41 (9), p.898-906
issn 0022-3131
1881-1248
language eng
recordid cdi_crossref_primary_10_1080_18811248_2004_9715562
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Applied sciences
chemiluminescence
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
hydrogen peroxide
Installations for energy generation and conversion: thermal and electrical energy
luminol
Nuclear fuels
rate equations
stress radical reactions
title Determination of Hydrogen Peroxide in Water by Chemiluminescence Detection, (II): Theoretical Analysis of Luminol Chemiluminescence Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Hydrogen%20Peroxide%20in%20Water%20by%20Chemiluminescence%20Detection,%20(II):%20Theoretical%20Analysis%20of%20Luminol%20Chemiluminescence%20Processes&rft.jtitle=Journal%20of%20nuclear%20science%20and%20technology&rft.au=UCHIDA,%20Shunsuke&rft.date=2004-09-01&rft.volume=41&rft.issue=9&rft.spage=898&rft.epage=906&rft.pages=898-906&rft.issn=0022-3131&rft.eissn=1881-1248&rft.coden=JNSTAX&rft_id=info:doi/10.1080/18811248.2004.9715562&rft_dat=%3Cpascalfrancis_cross%3E16253241%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true