Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation

Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofuels (London) 2024-05, Vol.15 (5), p.495-504
Hauptverfasser: Tou, I., Azri, Y., George, I. F., Bouzid, O., Khemili-Talbi, S., Sadi, M., Kebbouche-Gana, S., Anzil, A., Laichouchi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue 5
container_start_page 495
container_title Biofuels (London)
container_volume 15
creator Tou, I.
Azri, Y.
George, I. F.
Bouzid, O.
Khemili-Talbi, S.
Sadi, M.
Kebbouche-Gana, S.
Anzil, A.
Laichouchi, A.
description Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm 2 was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator.
doi_str_mv 10.1080/17597269.2023.2261751
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17597269_2023_2261751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17597269_2023_2261751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-9232793adec8b2fbf138c5e8df0a3e1c66bf48ea58d66aaf17ca52708f916bd23</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouKz7CEJfoGt-bJLeqYt_sOCNXodpmriRtilJivTtTdnVS-dmhgPfYc5B6JrgLcES3xBR1YLyeksxZVtKeRbIGVoteimoEOd_N68v0SbGL5yHE5a5FdIPoJMJDrpC-76fBpfmwsU4mbawwfcFFLtD54MfD3Oa-mLsYEhl73TwzQLZyWTSdPnyoTCd0Sk4vZh8msEESM4PV-jCQhfN5rTX6OPp8X33Uu7fnl939_tS00qmsqaMippBa7RsqG0sYVJXRrYWAzNEc97YW2mgki3nAJYIDRUVWNqa8KalbI2qo29-LsZgrBqD6yHMimC1lKV-y1JLWepUVubujpwbcogevn3oWpVgzrltgEG7qNj_Fj9H-HOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Tou, I. ; Azri, Y. ; George, I. F. ; Bouzid, O. ; Khemili-Talbi, S. ; Sadi, M. ; Kebbouche-Gana, S. ; Anzil, A. ; Laichouchi, A.</creator><creatorcontrib>Tou, I. ; Azri, Y. ; George, I. F. ; Bouzid, O. ; Khemili-Talbi, S. ; Sadi, M. ; Kebbouche-Gana, S. ; Anzil, A. ; Laichouchi, A.</creatorcontrib><description>Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm 2 was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator.</description><identifier>ISSN: 1759-7269</identifier><identifier>EISSN: 1759-7277</identifier><identifier>DOI: 10.1080/17597269.2023.2261751</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>bioelectricity ; Chronoamperometry ; electroactive bacteria ; electroactive biofilm ; extracellular electron transfer ; MFC</subject><ispartof>Biofuels (London), 2024-05, Vol.15 (5), p.495-504</ispartof><rights>2023 Informa UK Limited, trading as Taylor &amp; Francis Group 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-9232793adec8b2fbf138c5e8df0a3e1c66bf48ea58d66aaf17ca52708f916bd23</cites><orcidid>0000-0001-9089-7912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17597269.2023.2261751$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17597269.2023.2261751$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Tou, I.</creatorcontrib><creatorcontrib>Azri, Y.</creatorcontrib><creatorcontrib>George, I. F.</creatorcontrib><creatorcontrib>Bouzid, O.</creatorcontrib><creatorcontrib>Khemili-Talbi, S.</creatorcontrib><creatorcontrib>Sadi, M.</creatorcontrib><creatorcontrib>Kebbouche-Gana, S.</creatorcontrib><creatorcontrib>Anzil, A.</creatorcontrib><creatorcontrib>Laichouchi, A.</creatorcontrib><title>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</title><title>Biofuels (London)</title><description>Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm 2 was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator.</description><subject>bioelectricity</subject><subject>Chronoamperometry</subject><subject>electroactive bacteria</subject><subject>electroactive biofilm</subject><subject>extracellular electron transfer</subject><subject>MFC</subject><issn>1759-7269</issn><issn>1759-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQhYMouKz7CEJfoGt-bJLeqYt_sOCNXodpmriRtilJivTtTdnVS-dmhgPfYc5B6JrgLcES3xBR1YLyeksxZVtKeRbIGVoteimoEOd_N68v0SbGL5yHE5a5FdIPoJMJDrpC-76fBpfmwsU4mbawwfcFFLtD54MfD3Oa-mLsYEhl73TwzQLZyWTSdPnyoTCd0Sk4vZh8msEESM4PV-jCQhfN5rTX6OPp8X33Uu7fnl939_tS00qmsqaMippBa7RsqG0sYVJXRrYWAzNEc97YW2mgki3nAJYIDRUVWNqa8KalbI2qo29-LsZgrBqD6yHMimC1lKV-y1JLWepUVubujpwbcogevn3oWpVgzrltgEG7qNj_Fj9H-HOk</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Tou, I.</creator><creator>Azri, Y.</creator><creator>George, I. F.</creator><creator>Bouzid, O.</creator><creator>Khemili-Talbi, S.</creator><creator>Sadi, M.</creator><creator>Kebbouche-Gana, S.</creator><creator>Anzil, A.</creator><creator>Laichouchi, A.</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9089-7912</orcidid></search><sort><creationdate>20240527</creationdate><title>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</title><author>Tou, I. ; Azri, Y. ; George, I. F. ; Bouzid, O. ; Khemili-Talbi, S. ; Sadi, M. ; Kebbouche-Gana, S. ; Anzil, A. ; Laichouchi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-9232793adec8b2fbf138c5e8df0a3e1c66bf48ea58d66aaf17ca52708f916bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioelectricity</topic><topic>Chronoamperometry</topic><topic>electroactive bacteria</topic><topic>electroactive biofilm</topic><topic>extracellular electron transfer</topic><topic>MFC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tou, I.</creatorcontrib><creatorcontrib>Azri, Y.</creatorcontrib><creatorcontrib>George, I. F.</creatorcontrib><creatorcontrib>Bouzid, O.</creatorcontrib><creatorcontrib>Khemili-Talbi, S.</creatorcontrib><creatorcontrib>Sadi, M.</creatorcontrib><creatorcontrib>Kebbouche-Gana, S.</creatorcontrib><creatorcontrib>Anzil, A.</creatorcontrib><creatorcontrib>Laichouchi, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Biofuels (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tou, I.</au><au>Azri, Y.</au><au>George, I. F.</au><au>Bouzid, O.</au><au>Khemili-Talbi, S.</au><au>Sadi, M.</au><au>Kebbouche-Gana, S.</au><au>Anzil, A.</au><au>Laichouchi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</atitle><jtitle>Biofuels (London)</jtitle><date>2024-05-27</date><risdate>2024</risdate><volume>15</volume><issue>5</issue><spage>495</spage><epage>504</epage><pages>495-504</pages><issn>1759-7269</issn><eissn>1759-7277</eissn><abstract>Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm 2 was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/17597269.2023.2261751</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9089-7912</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-7269
ispartof Biofuels (London), 2024-05, Vol.15 (5), p.495-504
issn 1759-7269
1759-7277
language eng
recordid cdi_crossref_primary_10_1080_17597269_2023_2261751
source Taylor & Francis:Master (3349 titles)
subjects bioelectricity
Chronoamperometry
electroactive bacteria
electroactive biofilm
extracellular electron transfer
MFC
title Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20community%20issued%20from%20a%20Chlorophytum%20plant-microbial%20fuel%20cell%20for%20electricity%20generation&rft.jtitle=Biofuels%20(London)&rft.au=Tou,%20I.&rft.date=2024-05-27&rft.volume=15&rft.issue=5&rft.spage=495&rft.epage=504&rft.pages=495-504&rft.issn=1759-7269&rft.eissn=1759-7277&rft_id=info:doi/10.1080/17597269.2023.2261751&rft_dat=%3Ccrossref_infor%3E10_1080_17597269_2023_2261751%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true