Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation
Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlo...
Gespeichert in:
Veröffentlicht in: | Biofuels (London) 2024-05, Vol.15 (5), p.495-504 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 504 |
---|---|
container_issue | 5 |
container_start_page | 495 |
container_title | Biofuels (London) |
container_volume | 15 |
creator | Tou, I. Azri, Y. George, I. F. Bouzid, O. Khemili-Talbi, S. Sadi, M. Kebbouche-Gana, S. Anzil, A. Laichouchi, A. |
description | Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm
2
was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator. |
doi_str_mv | 10.1080/17597269.2023.2261751 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17597269_2023_2261751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17597269_2023_2261751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-9232793adec8b2fbf138c5e8df0a3e1c66bf48ea58d66aaf17ca52708f916bd23</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouKz7CEJfoGt-bJLeqYt_sOCNXodpmriRtilJivTtTdnVS-dmhgPfYc5B6JrgLcES3xBR1YLyeksxZVtKeRbIGVoteimoEOd_N68v0SbGL5yHE5a5FdIPoJMJDrpC-76fBpfmwsU4mbawwfcFFLtD54MfD3Oa-mLsYEhl73TwzQLZyWTSdPnyoTCd0Sk4vZh8msEESM4PV-jCQhfN5rTX6OPp8X33Uu7fnl939_tS00qmsqaMippBa7RsqG0sYVJXRrYWAzNEc97YW2mgki3nAJYIDRUVWNqa8KalbI2qo29-LsZgrBqD6yHMimC1lKV-y1JLWepUVubujpwbcogevn3oWpVgzrltgEG7qNj_Fj9H-HOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Tou, I. ; Azri, Y. ; George, I. F. ; Bouzid, O. ; Khemili-Talbi, S. ; Sadi, M. ; Kebbouche-Gana, S. ; Anzil, A. ; Laichouchi, A.</creator><creatorcontrib>Tou, I. ; Azri, Y. ; George, I. F. ; Bouzid, O. ; Khemili-Talbi, S. ; Sadi, M. ; Kebbouche-Gana, S. ; Anzil, A. ; Laichouchi, A.</creatorcontrib><description>Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm
2
was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator.</description><identifier>ISSN: 1759-7269</identifier><identifier>EISSN: 1759-7277</identifier><identifier>DOI: 10.1080/17597269.2023.2261751</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>bioelectricity ; Chronoamperometry ; electroactive bacteria ; electroactive biofilm ; extracellular electron transfer ; MFC</subject><ispartof>Biofuels (London), 2024-05, Vol.15 (5), p.495-504</ispartof><rights>2023 Informa UK Limited, trading as Taylor & Francis Group 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-9232793adec8b2fbf138c5e8df0a3e1c66bf48ea58d66aaf17ca52708f916bd23</cites><orcidid>0000-0001-9089-7912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17597269.2023.2261751$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17597269.2023.2261751$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Tou, I.</creatorcontrib><creatorcontrib>Azri, Y.</creatorcontrib><creatorcontrib>George, I. F.</creatorcontrib><creatorcontrib>Bouzid, O.</creatorcontrib><creatorcontrib>Khemili-Talbi, S.</creatorcontrib><creatorcontrib>Sadi, M.</creatorcontrib><creatorcontrib>Kebbouche-Gana, S.</creatorcontrib><creatorcontrib>Anzil, A.</creatorcontrib><creatorcontrib>Laichouchi, A.</creatorcontrib><title>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</title><title>Biofuels (London)</title><description>Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm
2
was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator.</description><subject>bioelectricity</subject><subject>Chronoamperometry</subject><subject>electroactive bacteria</subject><subject>electroactive biofilm</subject><subject>extracellular electron transfer</subject><subject>MFC</subject><issn>1759-7269</issn><issn>1759-7277</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQhYMouKz7CEJfoGt-bJLeqYt_sOCNXodpmriRtilJivTtTdnVS-dmhgPfYc5B6JrgLcES3xBR1YLyeksxZVtKeRbIGVoteimoEOd_N68v0SbGL5yHE5a5FdIPoJMJDrpC-76fBpfmwsU4mbawwfcFFLtD54MfD3Oa-mLsYEhl73TwzQLZyWTSdPnyoTCd0Sk4vZh8msEESM4PV-jCQhfN5rTX6OPp8X33Uu7fnl939_tS00qmsqaMippBa7RsqG0sYVJXRrYWAzNEc97YW2mgki3nAJYIDRUVWNqa8KalbI2qo29-LsZgrBqD6yHMimC1lKV-y1JLWepUVubujpwbcogevn3oWpVgzrltgEG7qNj_Fj9H-HOk</recordid><startdate>20240527</startdate><enddate>20240527</enddate><creator>Tou, I.</creator><creator>Azri, Y.</creator><creator>George, I. F.</creator><creator>Bouzid, O.</creator><creator>Khemili-Talbi, S.</creator><creator>Sadi, M.</creator><creator>Kebbouche-Gana, S.</creator><creator>Anzil, A.</creator><creator>Laichouchi, A.</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9089-7912</orcidid></search><sort><creationdate>20240527</creationdate><title>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</title><author>Tou, I. ; Azri, Y. ; George, I. F. ; Bouzid, O. ; Khemili-Talbi, S. ; Sadi, M. ; Kebbouche-Gana, S. ; Anzil, A. ; Laichouchi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-9232793adec8b2fbf138c5e8df0a3e1c66bf48ea58d66aaf17ca52708f916bd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioelectricity</topic><topic>Chronoamperometry</topic><topic>electroactive bacteria</topic><topic>electroactive biofilm</topic><topic>extracellular electron transfer</topic><topic>MFC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tou, I.</creatorcontrib><creatorcontrib>Azri, Y.</creatorcontrib><creatorcontrib>George, I. F.</creatorcontrib><creatorcontrib>Bouzid, O.</creatorcontrib><creatorcontrib>Khemili-Talbi, S.</creatorcontrib><creatorcontrib>Sadi, M.</creatorcontrib><creatorcontrib>Kebbouche-Gana, S.</creatorcontrib><creatorcontrib>Anzil, A.</creatorcontrib><creatorcontrib>Laichouchi, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Biofuels (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tou, I.</au><au>Azri, Y.</au><au>George, I. F.</au><au>Bouzid, O.</au><au>Khemili-Talbi, S.</au><au>Sadi, M.</au><au>Kebbouche-Gana, S.</au><au>Anzil, A.</au><au>Laichouchi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation</atitle><jtitle>Biofuels (London)</jtitle><date>2024-05-27</date><risdate>2024</risdate><volume>15</volume><issue>5</issue><spage>495</spage><epage>504</epage><pages>495-504</pages><issn>1759-7269</issn><eissn>1759-7277</eissn><abstract>Some microorganisms, particularly bacteria, can adhere to conductive surfaces and grow as an electroactive biofilm, on which they communicate electrochemically and generate electricity. Here, a bacterial community isolated from anodic electroactive biofilms of a Microbial Fuel Cell planted with Chlorophytum comosom is studied. Seventeen different bacterial strains were isolated from electroactive biofilms and were identified using the 16S rRNA marker gene. The strains were affiliated to 8 bacteria families and 8 genera (Aeromonas, Enterobacter, Alcaligenes, Pseudomonas, Clostridium, Paraclostridium, Enterococcus and Kurthia spp.). After that, it was demonstrated using electrochemical methods, principally imposed potential chronoamperometry under +0.155 mV/SCE, that the consortium constituted of 17 strains was able to exchange electrons with conductive materials. A maximum current density of 345 µA/cm
2
was revealed at 48h of the study, using acetate as the sole carbon source and without any additional external mediator.</abstract><pub>Taylor & Francis</pub><doi>10.1080/17597269.2023.2261751</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9089-7912</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-7269 |
ispartof | Biofuels (London), 2024-05, Vol.15 (5), p.495-504 |
issn | 1759-7269 1759-7277 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17597269_2023_2261751 |
source | Taylor & Francis:Master (3349 titles) |
subjects | bioelectricity Chronoamperometry electroactive bacteria electroactive biofilm extracellular electron transfer MFC |
title | Bacterial community issued from a Chlorophytum plant-microbial fuel cell for electricity generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20community%20issued%20from%20a%20Chlorophytum%20plant-microbial%20fuel%20cell%20for%20electricity%20generation&rft.jtitle=Biofuels%20(London)&rft.au=Tou,%20I.&rft.date=2024-05-27&rft.volume=15&rft.issue=5&rft.spage=495&rft.epage=504&rft.pages=495-504&rft.issn=1759-7269&rft.eissn=1759-7277&rft_id=info:doi/10.1080/17597269.2023.2261751&rft_dat=%3Ccrossref_infor%3E10_1080_17597269_2023_2261751%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |