A hierarchical indexing strategy for optimizing Apache Spark with HDFS to efficiently query big geospatial raster data
Earth observations and model simulations are generating big multidimensional array-based raster data. However, it is difficult to efficiently query these big raster data due to the inconsistency among the geospatial raster data model, distributed physical data storage model, and the data pipeline in...
Gespeichert in:
Veröffentlicht in: | International journal of digital earth 2020-03, Vol.13 (3), p.410-428 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 3 |
container_start_page | 410 |
container_title | International journal of digital earth |
container_volume | 13 |
creator | Hu, Fei Yang, Chaowei Jiang, Yongyao Li, Yun Song, Weiwei Duffy, Daniel Q. Schnase, John L. Lee, Tsengdar |
description | Earth observations and model simulations are generating big multidimensional array-based raster data. However, it is difficult to efficiently query these big raster data due to the inconsistency among the geospatial raster data model, distributed physical data storage model, and the data pipeline in distributed computing frameworks. To efficiently process big geospatial data, this paper proposes a three-layer hierarchical indexing strategy to optimize Apache Spark with Hadoop Distributed File System (HDFS) from the following aspects: (1) improve I/O efficiency by adopting the chunking data structure; (2) keep the workload balance and high data locality by building the global index (k-d tree); (3) enable Spark and HDFS to natively support geospatial raster data formats (e.g., HDF4, NetCDF4, GeoTiff) by building the local index (hash table); (4) index the in-memory data to further improve geospatial data queries; (5) develop a data repartition strategy to tune the query parallelism while keeping high data locality. The above strategies are implemented by developing the customized RDDs, and evaluated by comparing the performance with that of Spark SQL and SciSpark. The proposed indexing strategy can be applied to other distributed frameworks or cloud-based computing systems to natively support big geospatial data query with high efficiency. |
doi_str_mv | 10.1080/17538947.2018.1523957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17538947_2018_1523957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_55ec0b4052244cffb8f279db316b35b4</doaj_id><sourcerecordid>2353261208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-3e5e49157a40dced5465c946be8d70b183e96ed093eb1a820dcb09fde2a0ea883</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqXwE5Ascd7Fn4lzY1UorVSph8LZGtvjrJdsHByXkv56Erb0yGlGr2ae-Xir6j2jW0Y1_cgaJXQrmy2nTG-Z4qJVzYvqbNU3ulXq5XMum9fVm2k6UFpTKcVZ9WtH9hEzZLePDnoSB4-_49CRqWQo2M0kpEzSWOIxPq76bgS3R3I3Qv5BHmLZk6vPl3ekJIIhRBdxKP1Mft5jnomNHekwTSOUuLAzTAUz8VDgbfUqQD_hu6d4Xn2__PLt4mpzc_v1-mJ3s3GSyrIRqFC2TDUgqXfolayVa2VtUfuGWqYFtjV62gq0DDRfiixtg0cOFEFrcV5dn7g-wcGMOR4hzyZBNH-FlDsDuUTXo1EKHbWSKs6ldCFYHXjTeitYbYWycmF9OLHGnJb7pmIO6T4Py_qGCyV4zThdJ6pTlctpmjKG56mMmtUu888us9plnuxa-j6d-uKwfPwIDyn33hSY-5RDhsHFyYj_I_4AGvCdSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353261208</pqid></control><display><type>article</type><title>A hierarchical indexing strategy for optimizing Apache Spark with HDFS to efficiently query big geospatial raster data</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hu, Fei ; Yang, Chaowei ; Jiang, Yongyao ; Li, Yun ; Song, Weiwei ; Duffy, Daniel Q. ; Schnase, John L. ; Lee, Tsengdar</creator><creatorcontrib>Hu, Fei ; Yang, Chaowei ; Jiang, Yongyao ; Li, Yun ; Song, Weiwei ; Duffy, Daniel Q. ; Schnase, John L. ; Lee, Tsengdar</creatorcontrib><description>Earth observations and model simulations are generating big multidimensional array-based raster data. However, it is difficult to efficiently query these big raster data due to the inconsistency among the geospatial raster data model, distributed physical data storage model, and the data pipeline in distributed computing frameworks. To efficiently process big geospatial data, this paper proposes a three-layer hierarchical indexing strategy to optimize Apache Spark with Hadoop Distributed File System (HDFS) from the following aspects: (1) improve I/O efficiency by adopting the chunking data structure; (2) keep the workload balance and high data locality by building the global index (k-d tree); (3) enable Spark and HDFS to natively support geospatial raster data formats (e.g., HDF4, NetCDF4, GeoTiff) by building the local index (hash table); (4) index the in-memory data to further improve geospatial data queries; (5) develop a data repartition strategy to tune the query parallelism while keeping high data locality. The above strategies are implemented by developing the customized RDDs, and evaluated by comparing the performance with that of Spark SQL and SciSpark. The proposed indexing strategy can be applied to other distributed frameworks or cloud-based computing systems to natively support big geospatial data query with high efficiency.</description><identifier>ISSN: 1753-8947</identifier><identifier>EISSN: 1753-8955</identifier><identifier>DOI: 10.1080/17538947.2018.1523957</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Apache Spark ; Big data ; Computer networks ; Computer simulation ; Data ; Data storage ; Data structures ; distributed computing ; Distributed processing ; Earth ; GIS ; HDFS ; hierarchical indexing ; Indexing ; Information storage ; multi-dimensional ; Optimization ; Queries ; Query languages ; Raster ; Spatial data ; Strategy ; Submarine pipelines ; Workload</subject><ispartof>International journal of digital earth, 2020-03, Vol.13 (3), p.410-428</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-3e5e49157a40dced5465c946be8d70b183e96ed093eb1a820dcb09fde2a0ea883</citedby><cites>FETCH-LOGICAL-c404t-3e5e49157a40dced5465c946be8d70b183e96ed093eb1a820dcb09fde2a0ea883</cites><orcidid>0000-0001-7768-4066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Yang, Chaowei</creatorcontrib><creatorcontrib>Jiang, Yongyao</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Song, Weiwei</creatorcontrib><creatorcontrib>Duffy, Daniel Q.</creatorcontrib><creatorcontrib>Schnase, John L.</creatorcontrib><creatorcontrib>Lee, Tsengdar</creatorcontrib><title>A hierarchical indexing strategy for optimizing Apache Spark with HDFS to efficiently query big geospatial raster data</title><title>International journal of digital earth</title><description>Earth observations and model simulations are generating big multidimensional array-based raster data. However, it is difficult to efficiently query these big raster data due to the inconsistency among the geospatial raster data model, distributed physical data storage model, and the data pipeline in distributed computing frameworks. To efficiently process big geospatial data, this paper proposes a three-layer hierarchical indexing strategy to optimize Apache Spark with Hadoop Distributed File System (HDFS) from the following aspects: (1) improve I/O efficiency by adopting the chunking data structure; (2) keep the workload balance and high data locality by building the global index (k-d tree); (3) enable Spark and HDFS to natively support geospatial raster data formats (e.g., HDF4, NetCDF4, GeoTiff) by building the local index (hash table); (4) index the in-memory data to further improve geospatial data queries; (5) develop a data repartition strategy to tune the query parallelism while keeping high data locality. The above strategies are implemented by developing the customized RDDs, and evaluated by comparing the performance with that of Spark SQL and SciSpark. The proposed indexing strategy can be applied to other distributed frameworks or cloud-based computing systems to natively support big geospatial data query with high efficiency.</description><subject>Apache Spark</subject><subject>Big data</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data storage</subject><subject>Data structures</subject><subject>distributed computing</subject><subject>Distributed processing</subject><subject>Earth</subject><subject>GIS</subject><subject>HDFS</subject><subject>hierarchical indexing</subject><subject>Indexing</subject><subject>Information storage</subject><subject>multi-dimensional</subject><subject>Optimization</subject><subject>Queries</subject><subject>Query languages</subject><subject>Raster</subject><subject>Spatial data</subject><subject>Strategy</subject><subject>Submarine pipelines</subject><subject>Workload</subject><issn>1753-8947</issn><issn>1753-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEEqXwE5Ascd7Fn4lzY1UorVSph8LZGtvjrJdsHByXkv56Erb0yGlGr2ae-Xir6j2jW0Y1_cgaJXQrmy2nTG-Z4qJVzYvqbNU3ulXq5XMum9fVm2k6UFpTKcVZ9WtH9hEzZLePDnoSB4-_49CRqWQo2M0kpEzSWOIxPq76bgS3R3I3Qv5BHmLZk6vPl3ekJIIhRBdxKP1Mft5jnomNHekwTSOUuLAzTAUz8VDgbfUqQD_hu6d4Xn2__PLt4mpzc_v1-mJ3s3GSyrIRqFC2TDUgqXfolayVa2VtUfuGWqYFtjV62gq0DDRfiixtg0cOFEFrcV5dn7g-wcGMOR4hzyZBNH-FlDsDuUTXo1EKHbWSKs6ldCFYHXjTeitYbYWycmF9OLHGnJb7pmIO6T4Py_qGCyV4zThdJ6pTlctpmjKG56mMmtUu888us9plnuxa-j6d-uKwfPwIDyn33hSY-5RDhsHFyYj_I_4AGvCdSA</recordid><startdate>20200303</startdate><enddate>20200303</enddate><creator>Hu, Fei</creator><creator>Yang, Chaowei</creator><creator>Jiang, Yongyao</creator><creator>Li, Yun</creator><creator>Song, Weiwei</creator><creator>Duffy, Daniel Q.</creator><creator>Schnase, John L.</creator><creator>Lee, Tsengdar</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7768-4066</orcidid></search><sort><creationdate>20200303</creationdate><title>A hierarchical indexing strategy for optimizing Apache Spark with HDFS to efficiently query big geospatial raster data</title><author>Hu, Fei ; Yang, Chaowei ; Jiang, Yongyao ; Li, Yun ; Song, Weiwei ; Duffy, Daniel Q. ; Schnase, John L. ; Lee, Tsengdar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-3e5e49157a40dced5465c946be8d70b183e96ed093eb1a820dcb09fde2a0ea883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apache Spark</topic><topic>Big data</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data storage</topic><topic>Data structures</topic><topic>distributed computing</topic><topic>Distributed processing</topic><topic>Earth</topic><topic>GIS</topic><topic>HDFS</topic><topic>hierarchical indexing</topic><topic>Indexing</topic><topic>Information storage</topic><topic>multi-dimensional</topic><topic>Optimization</topic><topic>Queries</topic><topic>Query languages</topic><topic>Raster</topic><topic>Spatial data</topic><topic>Strategy</topic><topic>Submarine pipelines</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Yang, Chaowei</creatorcontrib><creatorcontrib>Jiang, Yongyao</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Song, Weiwei</creatorcontrib><creatorcontrib>Duffy, Daniel Q.</creatorcontrib><creatorcontrib>Schnase, John L.</creatorcontrib><creatorcontrib>Lee, Tsengdar</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of digital earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Fei</au><au>Yang, Chaowei</au><au>Jiang, Yongyao</au><au>Li, Yun</au><au>Song, Weiwei</au><au>Duffy, Daniel Q.</au><au>Schnase, John L.</au><au>Lee, Tsengdar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hierarchical indexing strategy for optimizing Apache Spark with HDFS to efficiently query big geospatial raster data</atitle><jtitle>International journal of digital earth</jtitle><date>2020-03-03</date><risdate>2020</risdate><volume>13</volume><issue>3</issue><spage>410</spage><epage>428</epage><pages>410-428</pages><issn>1753-8947</issn><eissn>1753-8955</eissn><abstract>Earth observations and model simulations are generating big multidimensional array-based raster data. However, it is difficult to efficiently query these big raster data due to the inconsistency among the geospatial raster data model, distributed physical data storage model, and the data pipeline in distributed computing frameworks. To efficiently process big geospatial data, this paper proposes a three-layer hierarchical indexing strategy to optimize Apache Spark with Hadoop Distributed File System (HDFS) from the following aspects: (1) improve I/O efficiency by adopting the chunking data structure; (2) keep the workload balance and high data locality by building the global index (k-d tree); (3) enable Spark and HDFS to natively support geospatial raster data formats (e.g., HDF4, NetCDF4, GeoTiff) by building the local index (hash table); (4) index the in-memory data to further improve geospatial data queries; (5) develop a data repartition strategy to tune the query parallelism while keeping high data locality. The above strategies are implemented by developing the customized RDDs, and evaluated by comparing the performance with that of Spark SQL and SciSpark. The proposed indexing strategy can be applied to other distributed frameworks or cloud-based computing systems to natively support big geospatial data query with high efficiency.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/17538947.2018.1523957</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7768-4066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1753-8947 |
ispartof | International journal of digital earth, 2020-03, Vol.13 (3), p.410-428 |
issn | 1753-8947 1753-8955 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17538947_2018_1523957 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Apache Spark Big data Computer networks Computer simulation Data Data storage Data structures distributed computing Distributed processing Earth GIS HDFS hierarchical indexing Indexing Information storage multi-dimensional Optimization Queries Query languages Raster Spatial data Strategy Submarine pipelines Workload |
title | A hierarchical indexing strategy for optimizing Apache Spark with HDFS to efficiently query big geospatial raster data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hierarchical%20indexing%20strategy%20for%20optimizing%20Apache%20Spark%20with%20HDFS%20to%20efficiently%20query%20big%20geospatial%20raster%20data&rft.jtitle=International%20journal%20of%20digital%20earth&rft.au=Hu,%20Fei&rft.date=2020-03-03&rft.volume=13&rft.issue=3&rft.spage=410&rft.epage=428&rft.pages=410-428&rft.issn=1753-8947&rft.eissn=1753-8955&rft_id=info:doi/10.1080/17538947.2018.1523957&rft_dat=%3Cproquest_cross%3E2353261208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353261208&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_55ec0b4052244cffb8f279db316b35b4&rfr_iscdi=true |