The severity and effects of Cyber-breaches in SMEs: a machine learning approach
In this paper, we investigate cyber breaches and their effects on small and medium enterprises (SMEs), considering the role that cybersecurity plays in SMEs, and the importance that SMEs have in the economy. Using the Cyber Security Breaches Survey data, the first contribution extends previous works...
Gespeichert in:
Veröffentlicht in: | Enterprise information systems 2023-03, Vol.17 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Enterprise information systems |
container_volume | 17 |
creator | Fernandez De Arroyabe, Ignacio Fernandez de Arroyabe, Juan Carlos |
description | In this paper, we investigate cyber breaches and their effects on small and medium enterprises (SMEs), considering the role that cybersecurity plays in SMEs, and the importance that SMEs have in the economy. Using the Cyber Security Breaches Survey data, the first contribution extends previous works confirming that SMEs receive a wide variety of breaches. Secondly, we have characterized the degree of severity of breaches in SMEs, based on disruption time and their cost. Our last contribution consists of determining the effect and severity of breaches in SMEs in terms of economic, financial and management impacts. |
doi_str_mv | 10.1080/17517575.2021.1942997 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17517575_2021_1942997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17517575_2021_1942997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-80706ed8a9519c04f5281684db1e7a840440c97d1935504dc0d43d76b7e849393</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKePIOQFOpMmaRKvlDGnMNmF8zqkyYmrdOlIitK3t2PTS-HAOXzw_wc-hG4pmVGiyB2VYhwpZiUp6YxqXmotz9DkwAspFDv_u6W4RFc5fxJSKSLFBK03W8AZviA1_YBt9BhCANdn3AU8H2pIRZ3Aui1k3ET89rrI99ji3UiaCLgFm2ITP7Dd71M3wmt0EWyb4ea0p-j9abGZPxer9fJl_rgqHBOyL8bnpAKvrBZUO8KDKBWtFPc1BWkVJ5wTp6WnmglBuHfEc-ZlVUtQXDPNpkgce13qck4QzD41O5sGQ4k5WDG_VszBijlZGXMPx1wTQ5d29rtLrTe9HdouhWSja7Jh_1f8AMQ1Z6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The severity and effects of Cyber-breaches in SMEs: a machine learning approach</title><source>Business Source Complete</source><creator>Fernandez De Arroyabe, Ignacio ; Fernandez de Arroyabe, Juan Carlos</creator><creatorcontrib>Fernandez De Arroyabe, Ignacio ; Fernandez de Arroyabe, Juan Carlos</creatorcontrib><description>In this paper, we investigate cyber breaches and their effects on small and medium enterprises (SMEs), considering the role that cybersecurity plays in SMEs, and the importance that SMEs have in the economy. Using the Cyber Security Breaches Survey data, the first contribution extends previous works confirming that SMEs receive a wide variety of breaches. Secondly, we have characterized the degree of severity of breaches in SMEs, based on disruption time and their cost. Our last contribution consists of determining the effect and severity of breaches in SMEs in terms of economic, financial and management impacts.</description><identifier>ISSN: 1751-7575</identifier><identifier>EISSN: 1751-7583</identifier><identifier>DOI: 10.1080/17517575.2021.1942997</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>artificial neural network ; Cyber breaches ; effects ; severity ; smes</subject><ispartof>Enterprise information systems, 2023-03, Vol.17 (3)</ispartof><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-80706ed8a9519c04f5281684db1e7a840440c97d1935504dc0d43d76b7e849393</citedby><cites>FETCH-LOGICAL-c357t-80706ed8a9519c04f5281684db1e7a840440c97d1935504dc0d43d76b7e849393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fernandez De Arroyabe, Ignacio</creatorcontrib><creatorcontrib>Fernandez de Arroyabe, Juan Carlos</creatorcontrib><title>The severity and effects of Cyber-breaches in SMEs: a machine learning approach</title><title>Enterprise information systems</title><description>In this paper, we investigate cyber breaches and their effects on small and medium enterprises (SMEs), considering the role that cybersecurity plays in SMEs, and the importance that SMEs have in the economy. Using the Cyber Security Breaches Survey data, the first contribution extends previous works confirming that SMEs receive a wide variety of breaches. Secondly, we have characterized the degree of severity of breaches in SMEs, based on disruption time and their cost. Our last contribution consists of determining the effect and severity of breaches in SMEs in terms of economic, financial and management impacts.</description><subject>artificial neural network</subject><subject>Cyber breaches</subject><subject>effects</subject><subject>severity</subject><subject>smes</subject><issn>1751-7575</issn><issn>1751-7583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kNFKwzAUhoMoOKePIOQFOpMmaRKvlDGnMNmF8zqkyYmrdOlIitK3t2PTS-HAOXzw_wc-hG4pmVGiyB2VYhwpZiUp6YxqXmotz9DkwAspFDv_u6W4RFc5fxJSKSLFBK03W8AZviA1_YBt9BhCANdn3AU8H2pIRZ3Aui1k3ET89rrI99ji3UiaCLgFm2ITP7Dd71M3wmt0EWyb4ea0p-j9abGZPxer9fJl_rgqHBOyL8bnpAKvrBZUO8KDKBWtFPc1BWkVJ5wTp6WnmglBuHfEc-ZlVUtQXDPNpkgce13qck4QzD41O5sGQ4k5WDG_VszBijlZGXMPx1wTQ5d29rtLrTe9HdouhWSja7Jh_1f8AMQ1Z6A</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Fernandez De Arroyabe, Ignacio</creator><creator>Fernandez de Arroyabe, Juan Carlos</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230304</creationdate><title>The severity and effects of Cyber-breaches in SMEs: a machine learning approach</title><author>Fernandez De Arroyabe, Ignacio ; Fernandez de Arroyabe, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-80706ed8a9519c04f5281684db1e7a840440c97d1935504dc0d43d76b7e849393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>artificial neural network</topic><topic>Cyber breaches</topic><topic>effects</topic><topic>severity</topic><topic>smes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez De Arroyabe, Ignacio</creatorcontrib><creatorcontrib>Fernandez de Arroyabe, Juan Carlos</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><jtitle>Enterprise information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez De Arroyabe, Ignacio</au><au>Fernandez de Arroyabe, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The severity and effects of Cyber-breaches in SMEs: a machine learning approach</atitle><jtitle>Enterprise information systems</jtitle><date>2023-03-04</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><issn>1751-7575</issn><eissn>1751-7583</eissn><abstract>In this paper, we investigate cyber breaches and their effects on small and medium enterprises (SMEs), considering the role that cybersecurity plays in SMEs, and the importance that SMEs have in the economy. Using the Cyber Security Breaches Survey data, the first contribution extends previous works confirming that SMEs receive a wide variety of breaches. Secondly, we have characterized the degree of severity of breaches in SMEs, based on disruption time and their cost. Our last contribution consists of determining the effect and severity of breaches in SMEs in terms of economic, financial and management impacts.</abstract><pub>Taylor & Francis</pub><doi>10.1080/17517575.2021.1942997</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7575 |
ispartof | Enterprise information systems, 2023-03, Vol.17 (3) |
issn | 1751-7575 1751-7583 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17517575_2021_1942997 |
source | Business Source Complete |
subjects | artificial neural network Cyber breaches effects severity smes |
title | The severity and effects of Cyber-breaches in SMEs: a machine learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20severity%20and%20effects%20of%20Cyber-breaches%20in%20SMEs:%20a%20machine%20learning%20approach&rft.jtitle=Enterprise%20information%20systems&rft.au=Fernandez%20De%20Arroyabe,%20Ignacio&rft.date=2023-03-04&rft.volume=17&rft.issue=3&rft.issn=1751-7575&rft.eissn=1751-7583&rft_id=info:doi/10.1080/17517575.2021.1942997&rft_dat=%3Ccrossref_infor%3E10_1080_17517575_2021_1942997%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |