Improving weather dependent zone specific irrigation control scheme in IoT and big data enabled self driven precision agriculture mechanism

Precision agriculture involves manipulation of variations in field productivity, maximization of income, scale backing of wastes, and minimizing of the impact on surroundings using automated machine-controlled information assortment and documentation. This work focuses on the efficient control of fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Enterprise information systems 2020-11, Vol.14 (9-10), p.1494-1515
Hauptverfasser: Keswani, Bright, Mohapatra, Ambarish G., Keswani, Poonam, Khanna, Ashish, Gupta, Deepak, Rodrigues, Joel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1515
container_issue 9-10
container_start_page 1494
container_title Enterprise information systems
container_volume 14
creator Keswani, Bright
Mohapatra, Ambarish G.
Keswani, Poonam
Khanna, Ashish
Gupta, Deepak
Rodrigues, Joel
description Precision agriculture involves manipulation of variations in field productivity, maximization of income, scale backing of wastes, and minimizing of the impact on surroundings using automated machine-controlled information assortment and documentation. This work focuses on the efficient control of farm irrigation by exploiting the capabilities of Internet of Things (IoT) and Big Data-based Decision Support System (DSS) to generate adequate valve control commands. Three varieties of prediction techniques such as Deep Neural Network (DNN), Random Forest (RF) and Resilient Back-Propagation Neural Network model are tested to predict soil Moisture Content (MC) in one hour advance by considering 6 numbers of different sensors. The real-time data collection is performed using the proposed IoT node deployment strategy tested in the field. An integrated IoT-based DSS framework is proposed to accumulate 17 numbers of soil and environmental parameters to predict future variation of soil MC in 1 h advance. Further, Structural Similarity (SSIM) Index is used to visualize and maintain uniform MC all over the agriculture area during the entire cropping period. Site and zone specific irrigation control scheme is tested in the test site using fuzzy logic-based weather dependent model. The complete system architecture, deployment strategy and performance of the proposed IoT-based DSS mechanism is discussed in this article.
doi_str_mv 10.1080/17517575.2020.1713406
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17517575_2020_1713406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_17517575_2020_1713406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-68eee94bce5809f29b7749dd852507b59f82e382f98a21c1970a769e8f52912c3</originalsourceid><addsrcrecordid>eNp9kNtKxDAQhosouB4eQZgXWE3SzSa5U8TDguDNel3SZLIbaZMyqYq-gi9tFw-XwsAMP_wfzFdVZ5ydc6bZBVdyGiXPBRNTpHi9YMu9arbL50rqev_vVvKwOirlmbGlZkrOqs9VP1B-jWkDb2jHLRJ4HDB5TCN85IRQBnQxRAeRKG7sGHMCl9NIuYPittgjxASrvAabPLRxA96OFjDZtkMPBbsAnuIrJhhoQpUdwG4oupdufCGEHt3Wplj6k-og2K7g6c8-rp5ub9bX9_OHx7vV9dXD3NWcjfOlRkSzaB1KzUwQplVqYbzXUkimWmmCFlhrEYy2gjtuFLNqaVAHKQwXrj6u5DfXUS6FMDQDxd7Se8NZszPa_BptdkabH6NT7_K7F1PI1Nu3TJ1vRvveZQpk0_RbU_-P-AJxhoAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving weather dependent zone specific irrigation control scheme in IoT and big data enabled self driven precision agriculture mechanism</title><source>Business Source Complete</source><creator>Keswani, Bright ; Mohapatra, Ambarish G. ; Keswani, Poonam ; Khanna, Ashish ; Gupta, Deepak ; Rodrigues, Joel</creator><creatorcontrib>Keswani, Bright ; Mohapatra, Ambarish G. ; Keswani, Poonam ; Khanna, Ashish ; Gupta, Deepak ; Rodrigues, Joel</creatorcontrib><description>Precision agriculture involves manipulation of variations in field productivity, maximization of income, scale backing of wastes, and minimizing of the impact on surroundings using automated machine-controlled information assortment and documentation. This work focuses on the efficient control of farm irrigation by exploiting the capabilities of Internet of Things (IoT) and Big Data-based Decision Support System (DSS) to generate adequate valve control commands. Three varieties of prediction techniques such as Deep Neural Network (DNN), Random Forest (RF) and Resilient Back-Propagation Neural Network model are tested to predict soil Moisture Content (MC) in one hour advance by considering 6 numbers of different sensors. The real-time data collection is performed using the proposed IoT node deployment strategy tested in the field. An integrated IoT-based DSS framework is proposed to accumulate 17 numbers of soil and environmental parameters to predict future variation of soil MC in 1 h advance. Further, Structural Similarity (SSIM) Index is used to visualize and maintain uniform MC all over the agriculture area during the entire cropping period. Site and zone specific irrigation control scheme is tested in the test site using fuzzy logic-based weather dependent model. The complete system architecture, deployment strategy and performance of the proposed IoT-based DSS mechanism is discussed in this article.</description><identifier>ISSN: 1751-7575</identifier><identifier>EISSN: 1751-7583</identifier><identifier>DOI: 10.1080/17517575.2020.1713406</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>deep Neural Network ; Fuzzy logic ; Internet of Things ; irrigation Control ; random Forest ; resilient Back-Propagation ; soil MC</subject><ispartof>Enterprise information systems, 2020-11, Vol.14 (9-10), p.1494-1515</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-68eee94bce5809f29b7749dd852507b59f82e382f98a21c1970a769e8f52912c3</citedby><cites>FETCH-LOGICAL-c310t-68eee94bce5809f29b7749dd852507b59f82e382f98a21c1970a769e8f52912c3</cites><orcidid>0000-0003-1464-0431 ; 0000-0001-8657-3800 ; 0000-0002-3019-7161 ; 0000-0001-5139-8889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Keswani, Bright</creatorcontrib><creatorcontrib>Mohapatra, Ambarish G.</creatorcontrib><creatorcontrib>Keswani, Poonam</creatorcontrib><creatorcontrib>Khanna, Ashish</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Rodrigues, Joel</creatorcontrib><title>Improving weather dependent zone specific irrigation control scheme in IoT and big data enabled self driven precision agriculture mechanism</title><title>Enterprise information systems</title><description>Precision agriculture involves manipulation of variations in field productivity, maximization of income, scale backing of wastes, and minimizing of the impact on surroundings using automated machine-controlled information assortment and documentation. This work focuses on the efficient control of farm irrigation by exploiting the capabilities of Internet of Things (IoT) and Big Data-based Decision Support System (DSS) to generate adequate valve control commands. Three varieties of prediction techniques such as Deep Neural Network (DNN), Random Forest (RF) and Resilient Back-Propagation Neural Network model are tested to predict soil Moisture Content (MC) in one hour advance by considering 6 numbers of different sensors. The real-time data collection is performed using the proposed IoT node deployment strategy tested in the field. An integrated IoT-based DSS framework is proposed to accumulate 17 numbers of soil and environmental parameters to predict future variation of soil MC in 1 h advance. Further, Structural Similarity (SSIM) Index is used to visualize and maintain uniform MC all over the agriculture area during the entire cropping period. Site and zone specific irrigation control scheme is tested in the test site using fuzzy logic-based weather dependent model. The complete system architecture, deployment strategy and performance of the proposed IoT-based DSS mechanism is discussed in this article.</description><subject>deep Neural Network</subject><subject>Fuzzy logic</subject><subject>Internet of Things</subject><subject>irrigation Control</subject><subject>random Forest</subject><subject>resilient Back-Propagation</subject><subject>soil MC</subject><issn>1751-7575</issn><issn>1751-7583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKxDAQhosouB4eQZgXWE3SzSa5U8TDguDNel3SZLIbaZMyqYq-gi9tFw-XwsAMP_wfzFdVZ5ydc6bZBVdyGiXPBRNTpHi9YMu9arbL50rqev_vVvKwOirlmbGlZkrOqs9VP1B-jWkDb2jHLRJ4HDB5TCN85IRQBnQxRAeRKG7sGHMCl9NIuYPittgjxASrvAabPLRxA96OFjDZtkMPBbsAnuIrJhhoQpUdwG4oupdufCGEHt3Wplj6k-og2K7g6c8-rp5ub9bX9_OHx7vV9dXD3NWcjfOlRkSzaB1KzUwQplVqYbzXUkimWmmCFlhrEYy2gjtuFLNqaVAHKQwXrj6u5DfXUS6FMDQDxd7Se8NZszPa_BptdkabH6NT7_K7F1PI1Nu3TJ1vRvveZQpk0_RbU_-P-AJxhoAg</recordid><startdate>20201125</startdate><enddate>20201125</enddate><creator>Keswani, Bright</creator><creator>Mohapatra, Ambarish G.</creator><creator>Keswani, Poonam</creator><creator>Khanna, Ashish</creator><creator>Gupta, Deepak</creator><creator>Rodrigues, Joel</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1464-0431</orcidid><orcidid>https://orcid.org/0000-0001-8657-3800</orcidid><orcidid>https://orcid.org/0000-0002-3019-7161</orcidid><orcidid>https://orcid.org/0000-0001-5139-8889</orcidid></search><sort><creationdate>20201125</creationdate><title>Improving weather dependent zone specific irrigation control scheme in IoT and big data enabled self driven precision agriculture mechanism</title><author>Keswani, Bright ; Mohapatra, Ambarish G. ; Keswani, Poonam ; Khanna, Ashish ; Gupta, Deepak ; Rodrigues, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-68eee94bce5809f29b7749dd852507b59f82e382f98a21c1970a769e8f52912c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>deep Neural Network</topic><topic>Fuzzy logic</topic><topic>Internet of Things</topic><topic>irrigation Control</topic><topic>random Forest</topic><topic>resilient Back-Propagation</topic><topic>soil MC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keswani, Bright</creatorcontrib><creatorcontrib>Mohapatra, Ambarish G.</creatorcontrib><creatorcontrib>Keswani, Poonam</creatorcontrib><creatorcontrib>Khanna, Ashish</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Rodrigues, Joel</creatorcontrib><collection>CrossRef</collection><jtitle>Enterprise information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keswani, Bright</au><au>Mohapatra, Ambarish G.</au><au>Keswani, Poonam</au><au>Khanna, Ashish</au><au>Gupta, Deepak</au><au>Rodrigues, Joel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving weather dependent zone specific irrigation control scheme in IoT and big data enabled self driven precision agriculture mechanism</atitle><jtitle>Enterprise information systems</jtitle><date>2020-11-25</date><risdate>2020</risdate><volume>14</volume><issue>9-10</issue><spage>1494</spage><epage>1515</epage><pages>1494-1515</pages><issn>1751-7575</issn><eissn>1751-7583</eissn><abstract>Precision agriculture involves manipulation of variations in field productivity, maximization of income, scale backing of wastes, and minimizing of the impact on surroundings using automated machine-controlled information assortment and documentation. This work focuses on the efficient control of farm irrigation by exploiting the capabilities of Internet of Things (IoT) and Big Data-based Decision Support System (DSS) to generate adequate valve control commands. Three varieties of prediction techniques such as Deep Neural Network (DNN), Random Forest (RF) and Resilient Back-Propagation Neural Network model are tested to predict soil Moisture Content (MC) in one hour advance by considering 6 numbers of different sensors. The real-time data collection is performed using the proposed IoT node deployment strategy tested in the field. An integrated IoT-based DSS framework is proposed to accumulate 17 numbers of soil and environmental parameters to predict future variation of soil MC in 1 h advance. Further, Structural Similarity (SSIM) Index is used to visualize and maintain uniform MC all over the agriculture area during the entire cropping period. Site and zone specific irrigation control scheme is tested in the test site using fuzzy logic-based weather dependent model. The complete system architecture, deployment strategy and performance of the proposed IoT-based DSS mechanism is discussed in this article.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/17517575.2020.1713406</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-1464-0431</orcidid><orcidid>https://orcid.org/0000-0001-8657-3800</orcidid><orcidid>https://orcid.org/0000-0002-3019-7161</orcidid><orcidid>https://orcid.org/0000-0001-5139-8889</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1751-7575
ispartof Enterprise information systems, 2020-11, Vol.14 (9-10), p.1494-1515
issn 1751-7575
1751-7583
language eng
recordid cdi_crossref_primary_10_1080_17517575_2020_1713406
source Business Source Complete
subjects deep Neural Network
Fuzzy logic
Internet of Things
irrigation Control
random Forest
resilient Back-Propagation
soil MC
title Improving weather dependent zone specific irrigation control scheme in IoT and big data enabled self driven precision agriculture mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20weather%20dependent%20zone%20specific%20irrigation%20control%20scheme%20in%20IoT%20and%20big%20data%20enabled%20self%20driven%20precision%20agriculture%20mechanism&rft.jtitle=Enterprise%20information%20systems&rft.au=Keswani,%20Bright&rft.date=2020-11-25&rft.volume=14&rft.issue=9-10&rft.spage=1494&rft.epage=1515&rft.pages=1494-1515&rft.issn=1751-7575&rft.eissn=1751-7583&rft_id=info:doi/10.1080/17517575.2020.1713406&rft_dat=%3Ccrossref_infor%3E10_1080_17517575_2020_1713406%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true