Discrete evolutionary population models: a new approach
In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathemati...
Gespeichert in:
Veröffentlicht in: | Journal of biological dynamics 2020-01, Vol.14 (1), p.454-478 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 478 |
---|---|
container_issue | 1 |
container_start_page | 454 |
container_title | Journal of biological dynamics |
container_volume | 14 |
creator | Mokni, Karima Elaydi, Saber CH-Chaoui, Mohamed Eladdadi, Amina |
description | In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations. Using the powerful tools and results developed in our recent work [E. D'Aniello and S. Elaydi, The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems, Discr. Contin. Dyn. Series B. 2019 (to appear).], we embed the non-autonomous difference equations in an autonomous discrete dynamical systems in a higher dimension space, which is the product space of the phase space and the space of the functions defining the non-autonomous system. Our current approach applies to two scenarios. In the first scenario, we assume that the trait equations are decoupled from the equations of the populations. This requires specialized biological and ecological assumptions which we clearly state. In the second scenario, we do not assume decoupling, but rather we assume that the dynamics of the trait is known, such as approaching a positive stable equilibrium point which may apply to a much broader evolutionary dynamics. |
doi_str_mv | 10.1080/17513758.2020.1772997 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17513758_2020_1772997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff5458b0b2254fd0815ebd7a87d19f53</doaj_id><sourcerecordid>2470883903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-bbf7d9a049d9bfa9aed35c1484235b2f09178413c75bbe0d60965e42d4c2e6a23</originalsourceid><addsrcrecordid>eNp9kUtP3DAUhaOqSFDKT0CK1E03A37GdleteEsjdQNr6_oFGXni1E6K5t_jdCgLFqxsH5_76R6dpjnF6Awjic6x4JgKLs8IIlUSgiglPjVHi76ious-v925PGy-lLJBiHMiuqNGXPbFZj_51v9NcZ76NEDetWMa5wjLq90m52P50UI7-OcWxjEnsE9fm4MAsfiT1_O4ebi-ur-4Xa1_39xd_FqvLJNsWhkThFOAmHLKBFDgHeUW1z9CuSEBKSwkw9QKboxHrkOq454RxyzxHRB63NztuS7BRo-539b1dIJe_xNSftSQp95Gr0PgjEuDDCGcBYck5t44AVI4rAKnlfV9z6oR_sy-THpbw_sYYfBpLpowLDGliqJq_fbOuklzHmrS6hJISqrQAuR7l82plOzD24IY6aUa_b8avVSjX6upcz_3c_0QUt7Cc8rR6Ql2MeWQYbB90fRjxAuUYZO-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470883903</pqid></control><display><type>article</type><title>Discrete evolutionary population models: a new approach</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mokni, Karima ; Elaydi, Saber ; CH-Chaoui, Mohamed ; Eladdadi, Amina</creator><creatorcontrib>Mokni, Karima ; Elaydi, Saber ; CH-Chaoui, Mohamed ; Eladdadi, Amina</creatorcontrib><description>In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations. Using the powerful tools and results developed in our recent work [E. D'Aniello and S. Elaydi, The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems, Discr. Contin. Dyn. Series B. 2019 (to appear).], we embed the non-autonomous difference equations in an autonomous discrete dynamical systems in a higher dimension space, which is the product space of the phase space and the space of the functions defining the non-autonomous system. Our current approach applies to two scenarios. In the first scenario, we assume that the trait equations are decoupled from the equations of the populations. This requires specialized biological and ecological assumptions which we clearly state. In the second scenario, we do not assume decoupling, but rather we assume that the dynamics of the trait is known, such as approaching a positive stable equilibrium point which may apply to a much broader evolutionary dynamics.</description><identifier>ISSN: 1751-3758</identifier><identifier>EISSN: 1751-3766</identifier><identifier>DOI: 10.1080/17513758.2020.1772997</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Beverton-Holt ; Darwinian ; Dynamical systems ; Evolution ; Evolutionary models ; Game theory ; Mathematical models ; non-autonomous ; Predator-prey ; Ricker ; stability ; trait</subject><ispartof>Journal of biological dynamics, 2020-01, Vol.14 (1), p.454-478</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020</rights><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-bbf7d9a049d9bfa9aed35c1484235b2f09178413c75bbe0d60965e42d4c2e6a23</citedby><cites>FETCH-LOGICAL-c484t-bbf7d9a049d9bfa9aed35c1484235b2f09178413c75bbe0d60965e42d4c2e6a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17513758.2020.1772997$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17513758.2020.1772997$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Mokni, Karima</creatorcontrib><creatorcontrib>Elaydi, Saber</creatorcontrib><creatorcontrib>CH-Chaoui, Mohamed</creatorcontrib><creatorcontrib>Eladdadi, Amina</creatorcontrib><title>Discrete evolutionary population models: a new approach</title><title>Journal of biological dynamics</title><description>In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations. Using the powerful tools and results developed in our recent work [E. D'Aniello and S. Elaydi, The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems, Discr. Contin. Dyn. Series B. 2019 (to appear).], we embed the non-autonomous difference equations in an autonomous discrete dynamical systems in a higher dimension space, which is the product space of the phase space and the space of the functions defining the non-autonomous system. Our current approach applies to two scenarios. In the first scenario, we assume that the trait equations are decoupled from the equations of the populations. This requires specialized biological and ecological assumptions which we clearly state. In the second scenario, we do not assume decoupling, but rather we assume that the dynamics of the trait is known, such as approaching a positive stable equilibrium point which may apply to a much broader evolutionary dynamics.</description><subject>Beverton-Holt</subject><subject>Darwinian</subject><subject>Dynamical systems</subject><subject>Evolution</subject><subject>Evolutionary models</subject><subject>Game theory</subject><subject>Mathematical models</subject><subject>non-autonomous</subject><subject>Predator-prey</subject><subject>Ricker</subject><subject>stability</subject><subject>trait</subject><issn>1751-3758</issn><issn>1751-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtP3DAUhaOqSFDKT0CK1E03A37GdleteEsjdQNr6_oFGXni1E6K5t_jdCgLFqxsH5_76R6dpjnF6Awjic6x4JgKLs8IIlUSgiglPjVHi76ious-v925PGy-lLJBiHMiuqNGXPbFZj_51v9NcZ76NEDetWMa5wjLq90m52P50UI7-OcWxjEnsE9fm4MAsfiT1_O4ebi-ur-4Xa1_39xd_FqvLJNsWhkThFOAmHLKBFDgHeUW1z9CuSEBKSwkw9QKboxHrkOq454RxyzxHRB63NztuS7BRo-539b1dIJe_xNSftSQp95Gr0PgjEuDDCGcBYck5t44AVI4rAKnlfV9z6oR_sy-THpbw_sYYfBpLpowLDGliqJq_fbOuklzHmrS6hJISqrQAuR7l82plOzD24IY6aUa_b8avVSjX6upcz_3c_0QUt7Cc8rR6Ql2MeWQYbB90fRjxAuUYZO-</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Mokni, Karima</creator><creator>Elaydi, Saber</creator><creator>CH-Chaoui, Mohamed</creator><creator>Eladdadi, Amina</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20200101</creationdate><title>Discrete evolutionary population models: a new approach</title><author>Mokni, Karima ; Elaydi, Saber ; CH-Chaoui, Mohamed ; Eladdadi, Amina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-bbf7d9a049d9bfa9aed35c1484235b2f09178413c75bbe0d60965e42d4c2e6a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Beverton-Holt</topic><topic>Darwinian</topic><topic>Dynamical systems</topic><topic>Evolution</topic><topic>Evolutionary models</topic><topic>Game theory</topic><topic>Mathematical models</topic><topic>non-autonomous</topic><topic>Predator-prey</topic><topic>Ricker</topic><topic>stability</topic><topic>trait</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mokni, Karima</creatorcontrib><creatorcontrib>Elaydi, Saber</creatorcontrib><creatorcontrib>CH-Chaoui, Mohamed</creatorcontrib><creatorcontrib>Eladdadi, Amina</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of biological dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mokni, Karima</au><au>Elaydi, Saber</au><au>CH-Chaoui, Mohamed</au><au>Eladdadi, Amina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete evolutionary population models: a new approach</atitle><jtitle>Journal of biological dynamics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>454</spage><epage>478</epage><pages>454-478</pages><issn>1751-3758</issn><eissn>1751-3766</eissn><abstract>In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations. Using the powerful tools and results developed in our recent work [E. D'Aniello and S. Elaydi, The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems, Discr. Contin. Dyn. Series B. 2019 (to appear).], we embed the non-autonomous difference equations in an autonomous discrete dynamical systems in a higher dimension space, which is the product space of the phase space and the space of the functions defining the non-autonomous system. Our current approach applies to two scenarios. In the first scenario, we assume that the trait equations are decoupled from the equations of the populations. This requires specialized biological and ecological assumptions which we clearly state. In the second scenario, we do not assume decoupling, but rather we assume that the dynamics of the trait is known, such as approaching a positive stable equilibrium point which may apply to a much broader evolutionary dynamics.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/17513758.2020.1772997</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-3758 |
ispartof | Journal of biological dynamics, 2020-01, Vol.14 (1), p.454-478 |
issn | 1751-3758 1751-3766 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17513758_2020_1772997 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Beverton-Holt Darwinian Dynamical systems Evolution Evolutionary models Game theory Mathematical models non-autonomous Predator-prey Ricker stability trait |
title | Discrete evolutionary population models: a new approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20evolutionary%20population%20models:%20a%20new%20approach&rft.jtitle=Journal%20of%20biological%20dynamics&rft.au=Mokni,%20Karima&rft.date=2020-01-01&rft.volume=14&rft.issue=1&rft.spage=454&rft.epage=478&rft.pages=454-478&rft.issn=1751-3758&rft.eissn=1751-3766&rft_id=info:doi/10.1080/17513758.2020.1772997&rft_dat=%3Cproquest_cross%3E2470883903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470883903&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ff5458b0b2254fd0815ebd7a87d19f53&rfr_iscdi=true |