Fundamental investigation into mass transfer process and microstructural transformation pathways in Ti-6Al-4V via underwater wire-laser directed energy deposition

The in-situ analysis of mass transfer behaviours in a novel underwater wire-laser directed energy deposition (ULDED) technique was conducted using in-situ X-ray high-speed imaging. By creating a stable local dry cavity within the water environment, three distinct mass transfer modes were identified:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virtual and physical prototyping 2024-12, Vol.19 (1)
Hauptverfasser: Fu, Yunlong, Yu, Mengqiu, Wu, Di, Zhao, Zhiming, Wang, Dexin, Guo, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Virtual and physical prototyping
container_volume 19
creator Fu, Yunlong
Yu, Mengqiu
Wu, Di
Zhao, Zhiming
Wang, Dexin
Guo, Ning
description The in-situ analysis of mass transfer behaviours in a novel underwater wire-laser directed energy deposition (ULDED) technique was conducted using in-situ X-ray high-speed imaging. By creating a stable local dry cavity within the water environment, three distinct mass transfer modes were identified: droplet transfer, liquid bridge transfer and spreading transfer modes. The mass transfer behaviours were effectively managed by maintaining the liquid bridge mode to enhance the formability of the metal deposits. The inherent heat treatment effect in ULDED provides a unique opportunity to tailor microstructures and mechanical properties in situ with establishing a thermal environment conducive to the preferred lamellar α+β microstructure instead of the acicular α′ martensite. With increasing heat input, the diffusion-controlled transformation pathway gave rise to the lamellar α+β instead of the martensite decomposition, underpinned by the microstructure morphological characteristics and the crystallographic orientations of constituent phases.
doi_str_mv 10.1080/17452759.2024.2374051
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17452759_2024_2374051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8db3ddcc9ec44b0f94fd50b56f39ebde</doaj_id><sourcerecordid>oai_doaj_org_article_8db3ddcc9ec44b0f94fd50b56f39ebde</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-4d94e3d15aa767936a0374e5b4cd46090166a6bc801f9460abd2d604e920c4c53</originalsourceid><addsrcrecordid>eNp9kctO5DAQRSPESLzmE0byD6Sx40faOxDiJSGxAbZWxa70GCVxy3bT6t-ZLx2HMCxn5fKV7yn53qr6xeiK0TW9ZK2QTSv1qqGNWDW8FVSyo-p01uumVe3x9yz1SXWW0julglPOTqs_d7vJwYhThoH46QNT9hvIPkzllgMZISWSI0ypx0i2MVgsAkyOjN7GkHLc2byLxbw8CnFc3FvIv_dwSAVDXnytrodavJEPD6QsxLiHXHh7H7EeIJXRldFmdAQnjJsDcbgNyc-oi-pHD0PCn1_nefV6d_ty81A_Pd8_3lw_1ZY3ItfCaYHcMQlQvqy5AlqSQNkJ64SimjKlQHV2TVmviwCda5yiAnVDrbCSn1ePC9cFeDfb6EeIBxPAm08hxI2BmL0d0Kxdx52zVqMVoqOF1ztJO6l6rrFzWFhyYc0ZpYj9N49RM5dm_pVm5tLMV2nFd7X4_PQZ5T7EwZkMhyHEvgRsfTL8_4i_PDujlQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fundamental investigation into mass transfer process and microstructural transformation pathways in Ti-6Al-4V via underwater wire-laser directed energy deposition</title><source>Taylor &amp; Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><creator>Fu, Yunlong ; Yu, Mengqiu ; Wu, Di ; Zhao, Zhiming ; Wang, Dexin ; Guo, Ning</creator><creatorcontrib>Fu, Yunlong ; Yu, Mengqiu ; Wu, Di ; Zhao, Zhiming ; Wang, Dexin ; Guo, Ning</creatorcontrib><description>The in-situ analysis of mass transfer behaviours in a novel underwater wire-laser directed energy deposition (ULDED) technique was conducted using in-situ X-ray high-speed imaging. By creating a stable local dry cavity within the water environment, three distinct mass transfer modes were identified: droplet transfer, liquid bridge transfer and spreading transfer modes. The mass transfer behaviours were effectively managed by maintaining the liquid bridge mode to enhance the formability of the metal deposits. The inherent heat treatment effect in ULDED provides a unique opportunity to tailor microstructures and mechanical properties in situ with establishing a thermal environment conducive to the preferred lamellar α+β microstructure instead of the acicular α′ martensite. With increasing heat input, the diffusion-controlled transformation pathway gave rise to the lamellar α+β instead of the martensite decomposition, underpinned by the microstructure morphological characteristics and the crystallographic orientations of constituent phases.</description><identifier>ISSN: 1745-2759</identifier><identifier>EISSN: 1745-2767</identifier><identifier>DOI: 10.1080/17452759.2024.2374051</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>formability ; mass transfer ; mechanical properties ; microstructure transformation pathway ; Underwater wire-laser directed energy deposition</subject><ispartof>Virtual and physical prototyping, 2024-12, Vol.19 (1)</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-4d94e3d15aa767936a0374e5b4cd46090166a6bc801f9460abd2d604e920c4c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17452759.2024.2374051$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17452759.2024.2374051$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Fu, Yunlong</creatorcontrib><creatorcontrib>Yu, Mengqiu</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Zhao, Zhiming</creatorcontrib><creatorcontrib>Wang, Dexin</creatorcontrib><creatorcontrib>Guo, Ning</creatorcontrib><title>Fundamental investigation into mass transfer process and microstructural transformation pathways in Ti-6Al-4V via underwater wire-laser directed energy deposition</title><title>Virtual and physical prototyping</title><description>The in-situ analysis of mass transfer behaviours in a novel underwater wire-laser directed energy deposition (ULDED) technique was conducted using in-situ X-ray high-speed imaging. By creating a stable local dry cavity within the water environment, three distinct mass transfer modes were identified: droplet transfer, liquid bridge transfer and spreading transfer modes. The mass transfer behaviours were effectively managed by maintaining the liquid bridge mode to enhance the formability of the metal deposits. The inherent heat treatment effect in ULDED provides a unique opportunity to tailor microstructures and mechanical properties in situ with establishing a thermal environment conducive to the preferred lamellar α+β microstructure instead of the acicular α′ martensite. With increasing heat input, the diffusion-controlled transformation pathway gave rise to the lamellar α+β instead of the martensite decomposition, underpinned by the microstructure morphological characteristics and the crystallographic orientations of constituent phases.</description><subject>formability</subject><subject>mass transfer</subject><subject>mechanical properties</subject><subject>microstructure transformation pathway</subject><subject>Underwater wire-laser directed energy deposition</subject><issn>1745-2759</issn><issn>1745-2767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctO5DAQRSPESLzmE0byD6Sx40faOxDiJSGxAbZWxa70GCVxy3bT6t-ZLx2HMCxn5fKV7yn53qr6xeiK0TW9ZK2QTSv1qqGNWDW8FVSyo-p01uumVe3x9yz1SXWW0julglPOTqs_d7vJwYhThoH46QNT9hvIPkzllgMZISWSI0ypx0i2MVgsAkyOjN7GkHLc2byLxbw8CnFc3FvIv_dwSAVDXnytrodavJEPD6QsxLiHXHh7H7EeIJXRldFmdAQnjJsDcbgNyc-oi-pHD0PCn1_nefV6d_ty81A_Pd8_3lw_1ZY3ItfCaYHcMQlQvqy5AlqSQNkJ64SimjKlQHV2TVmviwCda5yiAnVDrbCSn1ePC9cFeDfb6EeIBxPAm08hxI2BmL0d0Kxdx52zVqMVoqOF1ztJO6l6rrFzWFhyYc0ZpYj9N49RM5dm_pVm5tLMV2nFd7X4_PQZ5T7EwZkMhyHEvgRsfTL8_4i_PDujlQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Fu, Yunlong</creator><creator>Yu, Mengqiu</creator><creator>Wu, Di</creator><creator>Zhao, Zhiming</creator><creator>Wang, Dexin</creator><creator>Guo, Ning</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20241231</creationdate><title>Fundamental investigation into mass transfer process and microstructural transformation pathways in Ti-6Al-4V via underwater wire-laser directed energy deposition</title><author>Fu, Yunlong ; Yu, Mengqiu ; Wu, Di ; Zhao, Zhiming ; Wang, Dexin ; Guo, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-4d94e3d15aa767936a0374e5b4cd46090166a6bc801f9460abd2d604e920c4c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>formability</topic><topic>mass transfer</topic><topic>mechanical properties</topic><topic>microstructure transformation pathway</topic><topic>Underwater wire-laser directed energy deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yunlong</creatorcontrib><creatorcontrib>Yu, Mengqiu</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Zhao, Zhiming</creatorcontrib><creatorcontrib>Wang, Dexin</creatorcontrib><creatorcontrib>Guo, Ning</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Virtual and physical prototyping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yunlong</au><au>Yu, Mengqiu</au><au>Wu, Di</au><au>Zhao, Zhiming</au><au>Wang, Dexin</au><au>Guo, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental investigation into mass transfer process and microstructural transformation pathways in Ti-6Al-4V via underwater wire-laser directed energy deposition</atitle><jtitle>Virtual and physical prototyping</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><issn>1745-2759</issn><eissn>1745-2767</eissn><abstract>The in-situ analysis of mass transfer behaviours in a novel underwater wire-laser directed energy deposition (ULDED) technique was conducted using in-situ X-ray high-speed imaging. By creating a stable local dry cavity within the water environment, three distinct mass transfer modes were identified: droplet transfer, liquid bridge transfer and spreading transfer modes. The mass transfer behaviours were effectively managed by maintaining the liquid bridge mode to enhance the formability of the metal deposits. The inherent heat treatment effect in ULDED provides a unique opportunity to tailor microstructures and mechanical properties in situ with establishing a thermal environment conducive to the preferred lamellar α+β microstructure instead of the acicular α′ martensite. With increasing heat input, the diffusion-controlled transformation pathway gave rise to the lamellar α+β instead of the martensite decomposition, underpinned by the microstructure morphological characteristics and the crystallographic orientations of constituent phases.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/17452759.2024.2374051</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2759
ispartof Virtual and physical prototyping, 2024-12, Vol.19 (1)
issn 1745-2759
1745-2767
language eng
recordid cdi_crossref_primary_10_1080_17452759_2024_2374051
source Taylor & Francis Open Access; DOAJ Directory of Open Access Journals
subjects formability
mass transfer
mechanical properties
microstructure transformation pathway
Underwater wire-laser directed energy deposition
title Fundamental investigation into mass transfer process and microstructural transformation pathways in Ti-6Al-4V via underwater wire-laser directed energy deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20investigation%20into%20mass%20transfer%20process%20and%20microstructural%20transformation%20pathways%20in%20Ti-6Al-4V%20via%20underwater%20wire-laser%20directed%20energy%20deposition&rft.jtitle=Virtual%20and%20physical%20prototyping&rft.au=Fu,%20Yunlong&rft.date=2024-12-31&rft.volume=19&rft.issue=1&rft.issn=1745-2759&rft.eissn=1745-2767&rft_id=info:doi/10.1080/17452759.2024.2374051&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_8db3ddcc9ec44b0f94fd50b56f39ebde%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_8db3ddcc9ec44b0f94fd50b56f39ebde&rfr_iscdi=true