Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case
This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are giv...
Gespeichert in:
Veröffentlicht in: | Stochastics 1986-05, Vol.17 (3), p.163-205 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 3 |
container_start_page | 163 |
container_title | Stochastics |
container_volume | 17 |
creator | Bashirov, A. E. |
description | This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises. |
doi_str_mv | 10.1080/17442508608833389 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17442508608833389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7872269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</originalsourceid><addsrcrecordid>eNp1kE9PAyEUxInRxFr9AN44eF2FhV3AeDGN_5Imveh581ggYuiyAtrst7dN1Yvx9A4zv5m8QeickktKJLmigvO6IbIlUjLGpDpAs5qLuhKkFYdoRogileKKHqOTnN8IaZSkfIbMaix-DQH3cSgpBhwdHiEVDyFMOOps06c1OE-52HXGG19eMSTtS4I0YWNHOxg7FDxEn22-xsEPFhJ-_wCToPge95DtKTpyELI9-75z9HJ_97x4rJarh6fF7bLqqahV5XTdtBZAUs2sqR3lIJRT0mmlGipNy7aaEhoaLq2WDXFEayMtk4wr0hg2R3Sf26eYc7KuG9P2uTR1lHS7mbo_M22Ziz0zQu4huARD7_MvKKSo63Znu9nb_OBiWsMmpmC6AlOI6Ydh_7d8ASAnfHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</title><source>Taylor & Francis Journals Complete</source><creator>Bashirov, A. E.</creator><creatorcontrib>Bashirov, A. E.</creatorcontrib><description>This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises.</description><identifier>ISSN: 0090-9491</identifier><identifier>EISSN: 2472-7067</identifier><identifier>DOI: 10.1080/17442508608833389</identifier><identifier>CODEN: STOCB2</identifier><language>eng</language><publisher>New York, NY: Gordon and Breach Science Publishers, Inc</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; evolution equation ; Exact sciences and technology ; Linear quadratic problem ; mild solutions ; Optimal control ; separation theorem</subject><ispartof>Stochastics, 1986-05, Vol.17 (3), p.163-205</ispartof><rights>Copyright Taylor & Francis Group, LLC 1986</rights><rights>1987 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</citedby><cites>FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17442508608833389$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17442508608833389$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,59626,60415</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7872269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bashirov, A. E.</creatorcontrib><title>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</title><title>Stochastics</title><description>This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>evolution equation</subject><subject>Exact sciences and technology</subject><subject>Linear quadratic problem</subject><subject>mild solutions</subject><subject>Optimal control</subject><subject>separation theorem</subject><issn>0090-9491</issn><issn>2472-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PAyEUxInRxFr9AN44eF2FhV3AeDGN_5Imveh581ggYuiyAtrst7dN1Yvx9A4zv5m8QeickktKJLmigvO6IbIlUjLGpDpAs5qLuhKkFYdoRogileKKHqOTnN8IaZSkfIbMaix-DQH3cSgpBhwdHiEVDyFMOOps06c1OE-52HXGG19eMSTtS4I0YWNHOxg7FDxEn22-xsEPFhJ-_wCToPge95DtKTpyELI9-75z9HJ_97x4rJarh6fF7bLqqahV5XTdtBZAUs2sqR3lIJRT0mmlGipNy7aaEhoaLq2WDXFEayMtk4wr0hg2R3Sf26eYc7KuG9P2uTR1lHS7mbo_M22Ziz0zQu4huARD7_MvKKSo63Znu9nb_OBiWsMmpmC6AlOI6Ydh_7d8ASAnfHA</recordid><startdate>19860501</startdate><enddate>19860501</enddate><creator>Bashirov, A. E.</creator><general>Gordon and Breach Science Publishers, Inc</general><general>Gordon and Breach</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860501</creationdate><title>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</title><author>Bashirov, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>evolution equation</topic><topic>Exact sciences and technology</topic><topic>Linear quadratic problem</topic><topic>mild solutions</topic><topic>Optimal control</topic><topic>separation theorem</topic><toplevel>online_resources</toplevel><creatorcontrib>Bashirov, A. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashirov, A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</atitle><jtitle>Stochastics</jtitle><date>1986-05-01</date><risdate>1986</risdate><volume>17</volume><issue>3</issue><spage>163</spage><epage>205</epage><pages>163-205</pages><issn>0090-9491</issn><eissn>2472-7067</eissn><coden>STOCB2</coden><abstract>This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises.</abstract><cop>New York, NY</cop><pub>Gordon and Breach Science Publishers, Inc</pub><doi>10.1080/17442508608833389</doi><tpages>43</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-9491 |
ispartof | Stochastics, 1986-05, Vol.17 (3), p.163-205 |
issn | 0090-9491 2472-7067 |
language | eng |
recordid | cdi_crossref_primary_10_1080_17442508608833389 |
source | Taylor & Francis Journals Complete |
subjects | Applied sciences Computer science control theory systems Control theory. Systems evolution equation Exact sciences and technology Linear quadratic problem mild solutions Optimal control separation theorem |
title | Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20partially%20observed%20systems%20with%20arbitrary%20dependent%20noises:%20linear%20quadratic%20case&rft.jtitle=Stochastics&rft.au=Bashirov,%20A.%20E.&rft.date=1986-05-01&rft.volume=17&rft.issue=3&rft.spage=163&rft.epage=205&rft.pages=163-205&rft.issn=0090-9491&rft.eissn=2472-7067&rft.coden=STOCB2&rft_id=info:doi/10.1080/17442508608833389&rft_dat=%3Cpascalfrancis_cross%3E7872269%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |