Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case

This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastics 1986-05, Vol.17 (3), p.163-205
1. Verfasser: Bashirov, A. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 205
container_issue 3
container_start_page 163
container_title Stochastics
container_volume 17
creator Bashirov, A. E.
description This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises.
doi_str_mv 10.1080/17442508608833389
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_17442508608833389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>7872269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</originalsourceid><addsrcrecordid>eNp1kE9PAyEUxInRxFr9AN44eF2FhV3AeDGN_5Imveh581ggYuiyAtrst7dN1Yvx9A4zv5m8QeickktKJLmigvO6IbIlUjLGpDpAs5qLuhKkFYdoRogileKKHqOTnN8IaZSkfIbMaix-DQH3cSgpBhwdHiEVDyFMOOps06c1OE-52HXGG19eMSTtS4I0YWNHOxg7FDxEn22-xsEPFhJ-_wCToPge95DtKTpyELI9-75z9HJ_97x4rJarh6fF7bLqqahV5XTdtBZAUs2sqR3lIJRT0mmlGipNy7aaEhoaLq2WDXFEayMtk4wr0hg2R3Sf26eYc7KuG9P2uTR1lHS7mbo_M22Ziz0zQu4huARD7_MvKKSo63Znu9nb_OBiWsMmpmC6AlOI6Ydh_7d8ASAnfHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</title><source>Taylor &amp; Francis Journals Complete</source><creator>Bashirov, A. E.</creator><creatorcontrib>Bashirov, A. E.</creatorcontrib><description>This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises.</description><identifier>ISSN: 0090-9491</identifier><identifier>EISSN: 2472-7067</identifier><identifier>DOI: 10.1080/17442508608833389</identifier><identifier>CODEN: STOCB2</identifier><language>eng</language><publisher>New York, NY: Gordon and Breach Science Publishers, Inc</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control theory. Systems ; evolution equation ; Exact sciences and technology ; Linear quadratic problem ; mild solutions ; Optimal control ; separation theorem</subject><ispartof>Stochastics, 1986-05, Vol.17 (3), p.163-205</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1986</rights><rights>1987 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</citedby><cites>FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17442508608833389$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17442508608833389$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,59626,60415</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7872269$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bashirov, A. E.</creatorcontrib><title>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</title><title>Stochastics</title><description>This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>evolution equation</subject><subject>Exact sciences and technology</subject><subject>Linear quadratic problem</subject><subject>mild solutions</subject><subject>Optimal control</subject><subject>separation theorem</subject><issn>0090-9491</issn><issn>2472-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PAyEUxInRxFr9AN44eF2FhV3AeDGN_5Imveh581ggYuiyAtrst7dN1Yvx9A4zv5m8QeickktKJLmigvO6IbIlUjLGpDpAs5qLuhKkFYdoRogileKKHqOTnN8IaZSkfIbMaix-DQH3cSgpBhwdHiEVDyFMOOps06c1OE-52HXGG19eMSTtS4I0YWNHOxg7FDxEn22-xsEPFhJ-_wCToPge95DtKTpyELI9-75z9HJ_97x4rJarh6fF7bLqqahV5XTdtBZAUs2sqR3lIJRT0mmlGipNy7aaEhoaLq2WDXFEayMtk4wr0hg2R3Sf26eYc7KuG9P2uTR1lHS7mbo_M22Ziz0zQu4huARD7_MvKKSo63Znu9nb_OBiWsMmpmC6AlOI6Ydh_7d8ASAnfHA</recordid><startdate>19860501</startdate><enddate>19860501</enddate><creator>Bashirov, A. E.</creator><general>Gordon and Breach Science Publishers, Inc</general><general>Gordon and Breach</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860501</creationdate><title>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</title><author>Bashirov, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1729-fb256eaa81b3ed2f14a79f98fb99518d63aa897ba548eb850f0bbd8e3834905d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>evolution equation</topic><topic>Exact sciences and technology</topic><topic>Linear quadratic problem</topic><topic>mild solutions</topic><topic>Optimal control</topic><topic>separation theorem</topic><toplevel>online_resources</toplevel><creatorcontrib>Bashirov, A. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashirov, A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case</atitle><jtitle>Stochastics</jtitle><date>1986-05-01</date><risdate>1986</risdate><volume>17</volume><issue>3</issue><spage>163</spage><epage>205</epage><pages>163-205</pages><issn>0090-9491</issn><eissn>2472-7067</eissn><coden>STOCB2</coden><abstract>This paper deals with linear quadratic optimal control problem when signal and observation noises can be dependent. It is proved the separation principle for such case and it is shown how this separation principle enlarges the well-known duality between control and estimation problems. There are given existence results for three cases of the relations between signal and observation noises. One of them is a well-known independent noises case. Others concern the dependent noises.</abstract><cop>New York, NY</cop><pub>Gordon and Breach Science Publishers, Inc</pub><doi>10.1080/17442508608833389</doi><tpages>43</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-9491
ispartof Stochastics, 1986-05, Vol.17 (3), p.163-205
issn 0090-9491
2472-7067
language eng
recordid cdi_crossref_primary_10_1080_17442508608833389
source Taylor & Francis Journals Complete
subjects Applied sciences
Computer science
control theory
systems
Control theory. Systems
evolution equation
Exact sciences and technology
Linear quadratic problem
mild solutions
Optimal control
separation theorem
title Optimal control of partially observed systems with arbitrary dependent noises: linear quadratic case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20partially%20observed%20systems%20with%20arbitrary%20dependent%20noises:%20linear%20quadratic%20case&rft.jtitle=Stochastics&rft.au=Bashirov,%20A.%20E.&rft.date=1986-05-01&rft.volume=17&rft.issue=3&rft.spage=163&rft.epage=205&rft.pages=163-205&rft.issn=0090-9491&rft.eissn=2472-7067&rft.coden=STOCB2&rft_id=info:doi/10.1080/17442508608833389&rft_dat=%3Cpascalfrancis_cross%3E7872269%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true