Variational assimilation of surface wave data for bathymetry reconstruction. Part I: algorithm and test cases
Accurate mapping of ocean bathymetry is needed for effective modelling of ocean dynamics, such as tsunami prediction. Available bathymetry data does not always provide the resolution to model such nonlinear waves accurately, and collection of accurate data is logistically challenging. As an alternat...
Gespeichert in:
Veröffentlicht in: | Tellus. Series A, Dynamic meteorology and oceanography Dynamic meteorology and oceanography, 2021-01, Vol.73 (1), p.1-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Tellus. Series A, Dynamic meteorology and oceanography |
container_volume | 73 |
creator | Khan, R. A. Kevlahan, N. K.-R. |
description | Accurate mapping of ocean bathymetry is needed for effective modelling of ocean dynamics, such as tsunami prediction. Available bathymetry data does not always provide the resolution to model such nonlinear waves accurately, and collection of accurate data is logistically challenging. As an alternative, in this study we develop and evaluate a variational data assimilation scheme for the one-dimensional nonlinear shallow water equations that estimates bathymetry using a finite set of observations of surface wave height. We demonstrate that convergence to exact bathymetry is improved by including more observation locations and by implementing a low-pass filter in the data assimilation algorithm to remove small-scale noise. A necessary condition for convergence of the bathymetry reconstruction is that the amplitude of the initial conditions is less than 1% of the bathymetry height. We use density-based global sensitivity analysis (GSA) to assess the sensitivity of the surface wave and reconstruction error to model parameters. By demonstrating low sensitivity of the surface wave to the reconstruction error, we show that reconstructing the bathymetry with a relative error of about 10% is sufficiently accurate for surface wave modelling in most cases. These results can be used to guide the development of similar assimilation schemes in higher dimensions and more realistic geometries. |
doi_str_mv | 10.1080/16000870.2021.1976907 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_16000870_2021_1976907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2397821e664f41c6a303e106e503b495</doaj_id><sourcerecordid>2718628005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-38bca2303f2573b5e25638253d742be2ac211ae4b47bb5c09cddb2f1e1231be63</originalsourceid><addsrcrecordid>eNp9UctO3DAUjSoqFWg_oZIl1jP1I3aSrqgQtCMh0UXbrXXtXINHSQzXnqL5-yYMVKxY3ec593Gq6rPga8Fb_kUYznnb8LXkUqxF15iON--q4yW_WgpHr_wP1UnO2xkgOqOOq_EPUIQS0wQDg5zjGIenkKXA8o4CeGSP8BdZDwVYSMQclLv9iIX2jNCnKRfa-QWyZj-BCtt8ZTDcJorlbmQw9axgLsxDxvyxeh9gyPjp2Z5Wv68uf138WF3ffN9cfLte-VqLslKt8yAVV0HqRjmNUhvVSq36ppYOJXgpBGDt6sY57Xnn-97JIFBIJRwadVptDrx9gq29pzgC7W2CaJ8SiW7tvGn0A1qpuqaVAo2pQy28gXksCm5Qc-XqTs9cZweue0oPu_kUu007mt-VrWxEa2TL-dKlD12eUs6E4f9Uwe2ikn1RyS4q2WeVZtz5ARen-bcjPCYaeltgPyQKBJOP2aq3Kf4BzA2Yiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718628005</pqid></control><display><type>article</type><title>Variational assimilation of surface wave data for bathymetry reconstruction. Part I: algorithm and test cases</title><source>Taylor & Francis Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Co-Action Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khan, R. A. ; Kevlahan, N. K.-R.</creator><creatorcontrib>Khan, R. A. ; Kevlahan, N. K.-R.</creatorcontrib><description>Accurate mapping of ocean bathymetry is needed for effective modelling of ocean dynamics, such as tsunami prediction. Available bathymetry data does not always provide the resolution to model such nonlinear waves accurately, and collection of accurate data is logistically challenging. As an alternative, in this study we develop and evaluate a variational data assimilation scheme for the one-dimensional nonlinear shallow water equations that estimates bathymetry using a finite set of observations of surface wave height. We demonstrate that convergence to exact bathymetry is improved by including more observation locations and by implementing a low-pass filter in the data assimilation algorithm to remove small-scale noise. A necessary condition for convergence of the bathymetry reconstruction is that the amplitude of the initial conditions is less than 1% of the bathymetry height. We use density-based global sensitivity analysis (GSA) to assess the sensitivity of the surface wave and reconstruction error to model parameters. By demonstrating low sensitivity of the surface wave to the reconstruction error, we show that reconstructing the bathymetry with a relative error of about 10% is sufficiently accurate for surface wave modelling in most cases. These results can be used to guide the development of similar assimilation schemes in higher dimensions and more realistic geometries.</description><identifier>ISSN: 1600-0870</identifier><identifier>EISSN: 1600-0870</identifier><identifier>DOI: 10.1080/16000870.2021.1976907</identifier><language>eng</language><publisher>Stockholm: Taylor & Francis</publisher><subject>Algorithms ; Bathymetry ; bathymetry estimation ; Convergence ; Data assimilation ; Data collection ; density-based sensitivity analysis (DBSA) ; Dimensions ; global sensitivity analysis (GSA) ; Modelling ; Nonlinear waves ; Sensitivity analysis ; Shallow water ; shallow water equations ; Surface water waves ; tsunami modelling ; Tsunami prediction ; Wave data ; Wave height</subject><ispartof>Tellus. Series A, Dynamic meteorology and oceanography, 2021-01, Vol.73 (1), p.1-25</ispartof><rights>Tellus A: 2021. © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2021</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-38bca2303f2573b5e25638253d742be2ac211ae4b47bb5c09cddb2f1e1231be63</citedby><cites>FETCH-LOGICAL-c451t-38bca2303f2573b5e25638253d742be2ac211ae4b47bb5c09cddb2f1e1231be63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/16000870.2021.1976907$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/16000870.2021.1976907$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27479,27901,27902,59116,59117</link.rule.ids></links><search><creatorcontrib>Khan, R. A.</creatorcontrib><creatorcontrib>Kevlahan, N. K.-R.</creatorcontrib><title>Variational assimilation of surface wave data for bathymetry reconstruction. Part I: algorithm and test cases</title><title>Tellus. Series A, Dynamic meteorology and oceanography</title><description>Accurate mapping of ocean bathymetry is needed for effective modelling of ocean dynamics, such as tsunami prediction. Available bathymetry data does not always provide the resolution to model such nonlinear waves accurately, and collection of accurate data is logistically challenging. As an alternative, in this study we develop and evaluate a variational data assimilation scheme for the one-dimensional nonlinear shallow water equations that estimates bathymetry using a finite set of observations of surface wave height. We demonstrate that convergence to exact bathymetry is improved by including more observation locations and by implementing a low-pass filter in the data assimilation algorithm to remove small-scale noise. A necessary condition for convergence of the bathymetry reconstruction is that the amplitude of the initial conditions is less than 1% of the bathymetry height. We use density-based global sensitivity analysis (GSA) to assess the sensitivity of the surface wave and reconstruction error to model parameters. By demonstrating low sensitivity of the surface wave to the reconstruction error, we show that reconstructing the bathymetry with a relative error of about 10% is sufficiently accurate for surface wave modelling in most cases. These results can be used to guide the development of similar assimilation schemes in higher dimensions and more realistic geometries.</description><subject>Algorithms</subject><subject>Bathymetry</subject><subject>bathymetry estimation</subject><subject>Convergence</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>density-based sensitivity analysis (DBSA)</subject><subject>Dimensions</subject><subject>global sensitivity analysis (GSA)</subject><subject>Modelling</subject><subject>Nonlinear waves</subject><subject>Sensitivity analysis</subject><subject>Shallow water</subject><subject>shallow water equations</subject><subject>Surface water waves</subject><subject>tsunami modelling</subject><subject>Tsunami prediction</subject><subject>Wave data</subject><subject>Wave height</subject><issn>1600-0870</issn><issn>1600-0870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctO3DAUjSoqFWg_oZIl1jP1I3aSrqgQtCMh0UXbrXXtXINHSQzXnqL5-yYMVKxY3ec593Gq6rPga8Fb_kUYznnb8LXkUqxF15iON--q4yW_WgpHr_wP1UnO2xkgOqOOq_EPUIQS0wQDg5zjGIenkKXA8o4CeGSP8BdZDwVYSMQclLv9iIX2jNCnKRfa-QWyZj-BCtt8ZTDcJorlbmQw9axgLsxDxvyxeh9gyPjp2Z5Wv68uf138WF3ffN9cfLte-VqLslKt8yAVV0HqRjmNUhvVSq36ppYOJXgpBGDt6sY57Xnn-97JIFBIJRwadVptDrx9gq29pzgC7W2CaJ8SiW7tvGn0A1qpuqaVAo2pQy28gXksCm5Qc-XqTs9cZweue0oPu_kUu007mt-VrWxEa2TL-dKlD12eUs6E4f9Uwe2ikn1RyS4q2WeVZtz5ARen-bcjPCYaeltgPyQKBJOP2aq3Kf4BzA2Yiw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Khan, R. A.</creator><creator>Kevlahan, N. K.-R.</creator><general>Taylor & Francis</general><general>Ubiquity Press</general><general>Stockholm University Press</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>Variational assimilation of surface wave data for bathymetry reconstruction. Part I: algorithm and test cases</title><author>Khan, R. A. ; Kevlahan, N. K.-R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-38bca2303f2573b5e25638253d742be2ac211ae4b47bb5c09cddb2f1e1231be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bathymetry</topic><topic>bathymetry estimation</topic><topic>Convergence</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>density-based sensitivity analysis (DBSA)</topic><topic>Dimensions</topic><topic>global sensitivity analysis (GSA)</topic><topic>Modelling</topic><topic>Nonlinear waves</topic><topic>Sensitivity analysis</topic><topic>Shallow water</topic><topic>shallow water equations</topic><topic>Surface water waves</topic><topic>tsunami modelling</topic><topic>Tsunami prediction</topic><topic>Wave data</topic><topic>Wave height</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, R. A.</creatorcontrib><creatorcontrib>Kevlahan, N. K.-R.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Tellus. Series A, Dynamic meteorology and oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, R. A.</au><au>Kevlahan, N. K.-R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational assimilation of surface wave data for bathymetry reconstruction. Part I: algorithm and test cases</atitle><jtitle>Tellus. Series A, Dynamic meteorology and oceanography</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>73</volume><issue>1</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1600-0870</issn><eissn>1600-0870</eissn><abstract>Accurate mapping of ocean bathymetry is needed for effective modelling of ocean dynamics, such as tsunami prediction. Available bathymetry data does not always provide the resolution to model such nonlinear waves accurately, and collection of accurate data is logistically challenging. As an alternative, in this study we develop and evaluate a variational data assimilation scheme for the one-dimensional nonlinear shallow water equations that estimates bathymetry using a finite set of observations of surface wave height. We demonstrate that convergence to exact bathymetry is improved by including more observation locations and by implementing a low-pass filter in the data assimilation algorithm to remove small-scale noise. A necessary condition for convergence of the bathymetry reconstruction is that the amplitude of the initial conditions is less than 1% of the bathymetry height. We use density-based global sensitivity analysis (GSA) to assess the sensitivity of the surface wave and reconstruction error to model parameters. By demonstrating low sensitivity of the surface wave to the reconstruction error, we show that reconstructing the bathymetry with a relative error of about 10% is sufficiently accurate for surface wave modelling in most cases. These results can be used to guide the development of similar assimilation schemes in higher dimensions and more realistic geometries.</abstract><cop>Stockholm</cop><pub>Taylor & Francis</pub><doi>10.1080/16000870.2021.1976907</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-0870 |
ispartof | Tellus. Series A, Dynamic meteorology and oceanography, 2021-01, Vol.73 (1), p.1-25 |
issn | 1600-0870 1600-0870 |
language | eng |
recordid | cdi_crossref_primary_10_1080_16000870_2021_1976907 |
source | Taylor & Francis Open Access; DOAJ Directory of Open Access Journals; Co-Action Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Bathymetry bathymetry estimation Convergence Data assimilation Data collection density-based sensitivity analysis (DBSA) Dimensions global sensitivity analysis (GSA) Modelling Nonlinear waves Sensitivity analysis Shallow water shallow water equations Surface water waves tsunami modelling Tsunami prediction Wave data Wave height |
title | Variational assimilation of surface wave data for bathymetry reconstruction. Part I: algorithm and test cases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20assimilation%20of%20surface%20wave%20data%20for%20bathymetry%20reconstruction.%20Part%20I:%20algorithm%20and%20test%20cases&rft.jtitle=Tellus.%20Series%20A,%20Dynamic%20meteorology%20and%20oceanography&rft.au=Khan,%20R.%20A.&rft.date=2021-01-01&rft.volume=73&rft.issue=1&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1600-0870&rft.eissn=1600-0870&rft_id=info:doi/10.1080/16000870.2021.1976907&rft_dat=%3Cproquest_cross%3E2718628005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718628005&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_2397821e664f41c6a303e106e503b495&rfr_iscdi=true |