Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution
The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is...
Gespeichert in:
Veröffentlicht in: | International journal of river basin management 2023-01, Vol.21 (1), p.89-98 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | International journal of river basin management |
container_volume | 21 |
creator | Sulaiman, Mohd Sofiyan Zainal Abidin, Roslan Zakaria, Nor Azazi Ahmad, Mohammad Fadhli Fitriadhy, Ahmad Jusoh, Ahmad |
description | The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions. |
doi_str_mv | 10.1080/15715124.2021.1917585 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15715124_2021_1917585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789145310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-d82e5f1b218f3915212ad8f4098665d4f0079d24811335ae1f7d6d21a61a939c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQQh40cOumexmN3uzFK1CQfDPOaabpE1pNzXJKvXTu3WrR08zML_3ZuYhdA4kBcLJNbASGNA8pYRCChWUjLMDNAAOeUJJQQ67vmOSHXSMTkJYEsIKlpMBenvSHzbYaJs5jguNZRvdWkat8NxL2-Bgv35Gul409r3V-HI0eb7CxnlcL6SXddS-R_54jZUN0dtZG61rTtGRkaugz_Z1iF7vbl_G98n0cfIwHk2TmvIiJopTzQzMKHCTVcAoUKm4yUnFi4Kp3BBSVormHCDLmNRgSlUoCrIAWWVVnQ3RRe-78a67M0SxdK1vupWClryCnGVAOor1VO1dCF4bsfF2Lf1WABG7MMVvmGIXptiH2eluep1tutfX8tP5lRJRblfOGy-b2gaR_W_xDXQ6evk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789145310</pqid></control><display><type>article</type><title>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</title><source>Taylor & Francis Journals Complete</source><creator>Sulaiman, Mohd Sofiyan ; Zainal Abidin, Roslan ; Zakaria, Nor Azazi ; Ahmad, Mohammad Fadhli ; Fitriadhy, Ahmad ; Jusoh, Ahmad</creator><creatorcontrib>Sulaiman, Mohd Sofiyan ; Zainal Abidin, Roslan ; Zakaria, Nor Azazi ; Ahmad, Mohammad Fadhli ; Fitriadhy, Ahmad ; Jusoh, Ahmad</creatorcontrib><description>The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions.</description><identifier>ISSN: 1571-5124</identifier><identifier>EISSN: 1814-2060</identifier><identifier>DOI: 10.1080/15715124.2021.1917585</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Accuracy ; Automated grain sizing ; Automation ; Counting methods ; Edge detection ; Grain size ; Grain size distribution ; Image segmentation ; Particle size ; Pebbles ; relief distortion ; river bed material ; River beds ; sieving ; Size distribution ; Sizing</subject><ispartof>International journal of river basin management, 2023-01, Vol.21 (1), p.89-98</ispartof><rights>2021 International Association for Hydro-Environment Engineering and Research 2021</rights><rights>2021 International Association for Hydro-Environment Engineering and Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-d82e5f1b218f3915212ad8f4098665d4f0079d24811335ae1f7d6d21a61a939c3</cites><orcidid>0000-0002-1861-0451 ; 0000-0001-7718-8310 ; 0000-0002-5470-2871 ; 0000-0002-0744-0549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/15715124.2021.1917585$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/15715124.2021.1917585$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435</link.rule.ids></links><search><creatorcontrib>Sulaiman, Mohd Sofiyan</creatorcontrib><creatorcontrib>Zainal Abidin, Roslan</creatorcontrib><creatorcontrib>Zakaria, Nor Azazi</creatorcontrib><creatorcontrib>Ahmad, Mohammad Fadhli</creatorcontrib><creatorcontrib>Fitriadhy, Ahmad</creatorcontrib><creatorcontrib>Jusoh, Ahmad</creatorcontrib><title>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</title><title>International journal of river basin management</title><description>The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions.</description><subject>Accuracy</subject><subject>Automated grain sizing</subject><subject>Automation</subject><subject>Counting methods</subject><subject>Edge detection</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Image segmentation</subject><subject>Particle size</subject><subject>Pebbles</subject><subject>relief distortion</subject><subject>river bed material</subject><subject>River beds</subject><subject>sieving</subject><subject>Size distribution</subject><subject>Sizing</subject><issn>1571-5124</issn><issn>1814-2060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQQh40cOumexmN3uzFK1CQfDPOaabpE1pNzXJKvXTu3WrR08zML_3ZuYhdA4kBcLJNbASGNA8pYRCChWUjLMDNAAOeUJJQQ67vmOSHXSMTkJYEsIKlpMBenvSHzbYaJs5jguNZRvdWkat8NxL2-Bgv35Gul409r3V-HI0eb7CxnlcL6SXddS-R_54jZUN0dtZG61rTtGRkaugz_Z1iF7vbl_G98n0cfIwHk2TmvIiJopTzQzMKHCTVcAoUKm4yUnFi4Kp3BBSVormHCDLmNRgSlUoCrIAWWVVnQ3RRe-78a67M0SxdK1vupWClryCnGVAOor1VO1dCF4bsfF2Lf1WABG7MMVvmGIXptiH2eluep1tutfX8tP5lRJRblfOGy-b2gaR_W_xDXQ6evk</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Sulaiman, Mohd Sofiyan</creator><creator>Zainal Abidin, Roslan</creator><creator>Zakaria, Nor Azazi</creator><creator>Ahmad, Mohammad Fadhli</creator><creator>Fitriadhy, Ahmad</creator><creator>Jusoh, Ahmad</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1861-0451</orcidid><orcidid>https://orcid.org/0000-0001-7718-8310</orcidid><orcidid>https://orcid.org/0000-0002-5470-2871</orcidid><orcidid>https://orcid.org/0000-0002-0744-0549</orcidid></search><sort><creationdate>20230102</creationdate><title>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</title><author>Sulaiman, Mohd Sofiyan ; Zainal Abidin, Roslan ; Zakaria, Nor Azazi ; Ahmad, Mohammad Fadhli ; Fitriadhy, Ahmad ; Jusoh, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-d82e5f1b218f3915212ad8f4098665d4f0079d24811335ae1f7d6d21a61a939c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Automated grain sizing</topic><topic>Automation</topic><topic>Counting methods</topic><topic>Edge detection</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Image segmentation</topic><topic>Particle size</topic><topic>Pebbles</topic><topic>relief distortion</topic><topic>river bed material</topic><topic>River beds</topic><topic>sieving</topic><topic>Size distribution</topic><topic>Sizing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sulaiman, Mohd Sofiyan</creatorcontrib><creatorcontrib>Zainal Abidin, Roslan</creatorcontrib><creatorcontrib>Zakaria, Nor Azazi</creatorcontrib><creatorcontrib>Ahmad, Mohammad Fadhli</creatorcontrib><creatorcontrib>Fitriadhy, Ahmad</creatorcontrib><creatorcontrib>Jusoh, Ahmad</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of river basin management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sulaiman, Mohd Sofiyan</au><au>Zainal Abidin, Roslan</au><au>Zakaria, Nor Azazi</au><au>Ahmad, Mohammad Fadhli</au><au>Fitriadhy, Ahmad</au><au>Jusoh, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</atitle><jtitle>International journal of river basin management</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>89</spage><epage>98</epage><pages>89-98</pages><issn>1571-5124</issn><eissn>1814-2060</eissn><abstract>The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/15715124.2021.1917585</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1861-0451</orcidid><orcidid>https://orcid.org/0000-0001-7718-8310</orcidid><orcidid>https://orcid.org/0000-0002-5470-2871</orcidid><orcidid>https://orcid.org/0000-0002-0744-0549</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1571-5124 |
ispartof | International journal of river basin management, 2023-01, Vol.21 (1), p.89-98 |
issn | 1571-5124 1814-2060 |
language | eng |
recordid | cdi_crossref_primary_10_1080_15715124_2021_1917585 |
source | Taylor & Francis Journals Complete |
subjects | Accuracy Automated grain sizing Automation Counting methods Edge detection Grain size Grain size distribution Image segmentation Particle size Pebbles relief distortion river bed material River beds sieving Size distribution Sizing |
title | Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20automated%20grain%20sizing%20technique%20(AGS)%20for%20characterizing%20grain%20size%20distribution&rft.jtitle=International%20journal%20of%20river%20basin%20management&rft.au=Sulaiman,%20Mohd%20Sofiyan&rft.date=2023-01-02&rft.volume=21&rft.issue=1&rft.spage=89&rft.epage=98&rft.pages=89-98&rft.issn=1571-5124&rft.eissn=1814-2060&rft_id=info:doi/10.1080/15715124.2021.1917585&rft_dat=%3Cproquest_cross%3E2789145310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789145310&rft_id=info:pmid/&rfr_iscdi=true |