Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution

The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of river basin management 2023-01, Vol.21 (1), p.89-98
Hauptverfasser: Sulaiman, Mohd Sofiyan, Zainal Abidin, Roslan, Zakaria, Nor Azazi, Ahmad, Mohammad Fadhli, Fitriadhy, Ahmad, Jusoh, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 89
container_title International journal of river basin management
container_volume 21
creator Sulaiman, Mohd Sofiyan
Zainal Abidin, Roslan
Zakaria, Nor Azazi
Ahmad, Mohammad Fadhli
Fitriadhy, Ahmad
Jusoh, Ahmad
description The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions.
doi_str_mv 10.1080/15715124.2021.1917585
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15715124_2021_1917585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789145310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-d82e5f1b218f3915212ad8f4098665d4f0079d24811335ae1f7d6d21a61a939c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQQh40cOumexmN3uzFK1CQfDPOaabpE1pNzXJKvXTu3WrR08zML_3ZuYhdA4kBcLJNbASGNA8pYRCChWUjLMDNAAOeUJJQQ67vmOSHXSMTkJYEsIKlpMBenvSHzbYaJs5jguNZRvdWkat8NxL2-Bgv35Gul409r3V-HI0eb7CxnlcL6SXddS-R_54jZUN0dtZG61rTtGRkaugz_Z1iF7vbl_G98n0cfIwHk2TmvIiJopTzQzMKHCTVcAoUKm4yUnFi4Kp3BBSVormHCDLmNRgSlUoCrIAWWVVnQ3RRe-78a67M0SxdK1vupWClryCnGVAOor1VO1dCF4bsfF2Lf1WABG7MMVvmGIXptiH2eluep1tutfX8tP5lRJRblfOGy-b2gaR_W_xDXQ6evk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789145310</pqid></control><display><type>article</type><title>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</title><source>Taylor &amp; Francis Journals Complete</source><creator>Sulaiman, Mohd Sofiyan ; Zainal Abidin, Roslan ; Zakaria, Nor Azazi ; Ahmad, Mohammad Fadhli ; Fitriadhy, Ahmad ; Jusoh, Ahmad</creator><creatorcontrib>Sulaiman, Mohd Sofiyan ; Zainal Abidin, Roslan ; Zakaria, Nor Azazi ; Ahmad, Mohammad Fadhli ; Fitriadhy, Ahmad ; Jusoh, Ahmad</creatorcontrib><description>The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions.</description><identifier>ISSN: 1571-5124</identifier><identifier>EISSN: 1814-2060</identifier><identifier>DOI: 10.1080/15715124.2021.1917585</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Accuracy ; Automated grain sizing ; Automation ; Counting methods ; Edge detection ; Grain size ; Grain size distribution ; Image segmentation ; Particle size ; Pebbles ; relief distortion ; river bed material ; River beds ; sieving ; Size distribution ; Sizing</subject><ispartof>International journal of river basin management, 2023-01, Vol.21 (1), p.89-98</ispartof><rights>2021 International Association for Hydro-Environment Engineering and Research 2021</rights><rights>2021 International Association for Hydro-Environment Engineering and Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-d82e5f1b218f3915212ad8f4098665d4f0079d24811335ae1f7d6d21a61a939c3</cites><orcidid>0000-0002-1861-0451 ; 0000-0001-7718-8310 ; 0000-0002-5470-2871 ; 0000-0002-0744-0549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/15715124.2021.1917585$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/15715124.2021.1917585$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435</link.rule.ids></links><search><creatorcontrib>Sulaiman, Mohd Sofiyan</creatorcontrib><creatorcontrib>Zainal Abidin, Roslan</creatorcontrib><creatorcontrib>Zakaria, Nor Azazi</creatorcontrib><creatorcontrib>Ahmad, Mohammad Fadhli</creatorcontrib><creatorcontrib>Fitriadhy, Ahmad</creatorcontrib><creatorcontrib>Jusoh, Ahmad</creatorcontrib><title>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</title><title>International journal of river basin management</title><description>The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions.</description><subject>Accuracy</subject><subject>Automated grain sizing</subject><subject>Automation</subject><subject>Counting methods</subject><subject>Edge detection</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Image segmentation</subject><subject>Particle size</subject><subject>Pebbles</subject><subject>relief distortion</subject><subject>river bed material</subject><subject>River beds</subject><subject>sieving</subject><subject>Size distribution</subject><subject>Sizing</subject><issn>1571-5124</issn><issn>1814-2060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfQQh40cOumexmN3uzFK1CQfDPOaabpE1pNzXJKvXTu3WrR08zML_3ZuYhdA4kBcLJNbASGNA8pYRCChWUjLMDNAAOeUJJQQ67vmOSHXSMTkJYEsIKlpMBenvSHzbYaJs5jguNZRvdWkat8NxL2-Bgv35Gul409r3V-HI0eb7CxnlcL6SXddS-R_54jZUN0dtZG61rTtGRkaugz_Z1iF7vbl_G98n0cfIwHk2TmvIiJopTzQzMKHCTVcAoUKm4yUnFi4Kp3BBSVormHCDLmNRgSlUoCrIAWWVVnQ3RRe-78a67M0SxdK1vupWClryCnGVAOor1VO1dCF4bsfF2Lf1WABG7MMVvmGIXptiH2eluep1tutfX8tP5lRJRblfOGy-b2gaR_W_xDXQ6evk</recordid><startdate>20230102</startdate><enddate>20230102</enddate><creator>Sulaiman, Mohd Sofiyan</creator><creator>Zainal Abidin, Roslan</creator><creator>Zakaria, Nor Azazi</creator><creator>Ahmad, Mohammad Fadhli</creator><creator>Fitriadhy, Ahmad</creator><creator>Jusoh, Ahmad</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1861-0451</orcidid><orcidid>https://orcid.org/0000-0001-7718-8310</orcidid><orcidid>https://orcid.org/0000-0002-5470-2871</orcidid><orcidid>https://orcid.org/0000-0002-0744-0549</orcidid></search><sort><creationdate>20230102</creationdate><title>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</title><author>Sulaiman, Mohd Sofiyan ; Zainal Abidin, Roslan ; Zakaria, Nor Azazi ; Ahmad, Mohammad Fadhli ; Fitriadhy, Ahmad ; Jusoh, Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-d82e5f1b218f3915212ad8f4098665d4f0079d24811335ae1f7d6d21a61a939c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Automated grain sizing</topic><topic>Automation</topic><topic>Counting methods</topic><topic>Edge detection</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Image segmentation</topic><topic>Particle size</topic><topic>Pebbles</topic><topic>relief distortion</topic><topic>river bed material</topic><topic>River beds</topic><topic>sieving</topic><topic>Size distribution</topic><topic>Sizing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sulaiman, Mohd Sofiyan</creatorcontrib><creatorcontrib>Zainal Abidin, Roslan</creatorcontrib><creatorcontrib>Zakaria, Nor Azazi</creatorcontrib><creatorcontrib>Ahmad, Mohammad Fadhli</creatorcontrib><creatorcontrib>Fitriadhy, Ahmad</creatorcontrib><creatorcontrib>Jusoh, Ahmad</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of river basin management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sulaiman, Mohd Sofiyan</au><au>Zainal Abidin, Roslan</au><au>Zakaria, Nor Azazi</au><au>Ahmad, Mohammad Fadhli</au><au>Fitriadhy, Ahmad</au><au>Jusoh, Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution</atitle><jtitle>International journal of river basin management</jtitle><date>2023-01-02</date><risdate>2023</risdate><volume>21</volume><issue>1</issue><spage>89</spage><epage>98</epage><pages>89-98</pages><issn>1571-5124</issn><eissn>1814-2060</eissn><abstract>The automated grain sizing technique (AGS) has been widely used to characterize grain size distribution of a channel bed. A handful number of literatures have been made available in portraying the wide range of AGS application for river and coastal studies. However, the accuracy of this technique is subject to further validation and verification. The accuracy of the AGS technique is lessened due to distortions of image, relief, or tilt. This paper discusses the consistency of the AGS technique at different ground sampling distances, and the implementation of correction factors to modify the grain size distribution (GSD) curve of the AGS technique on fine and coarse fractions. Through a discrepancy ratio test, the GSD curve from the AGS technique was compared with those of the conventional sieving and pebble-counting methods. It was observed that relief distortion did not have a significant impact on the GSD curve. However, textural presence in sediment particles led to 'over-segmentation,' which complicated the edge detection of an individual particle. The introduction of correction factors, using least square regression equation, was able to correct those errors by reducing and maintaining the discrepancy ratio to 0.688-1.283 for fine fractions, and 0.758-1.125 for coarse fractions.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15715124.2021.1917585</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1861-0451</orcidid><orcidid>https://orcid.org/0000-0001-7718-8310</orcidid><orcidid>https://orcid.org/0000-0002-5470-2871</orcidid><orcidid>https://orcid.org/0000-0002-0744-0549</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1571-5124
ispartof International journal of river basin management, 2023-01, Vol.21 (1), p.89-98
issn 1571-5124
1814-2060
language eng
recordid cdi_crossref_primary_10_1080_15715124_2021_1917585
source Taylor & Francis Journals Complete
subjects Accuracy
Automated grain sizing
Automation
Counting methods
Edge detection
Grain size
Grain size distribution
Image segmentation
Particle size
Pebbles
relief distortion
river bed material
River beds
sieving
Size distribution
Sizing
title Revisiting the automated grain sizing technique (AGS) for characterizing grain size distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A09%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20automated%20grain%20sizing%20technique%20(AGS)%20for%20characterizing%20grain%20size%20distribution&rft.jtitle=International%20journal%20of%20river%20basin%20management&rft.au=Sulaiman,%20Mohd%20Sofiyan&rft.date=2023-01-02&rft.volume=21&rft.issue=1&rft.spage=89&rft.epage=98&rft.pages=89-98&rft.issn=1571-5124&rft.eissn=1814-2060&rft_id=info:doi/10.1080/15715124.2021.1917585&rft_dat=%3Cproquest_cross%3E2789145310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789145310&rft_id=info:pmid/&rfr_iscdi=true