Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data

We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical theory and practice 2017-10, Vol.11 (4), p.531-552
Hauptverfasser: Hoxhaj, Valmira, Khattree, Ravindra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 552
container_issue 4
container_start_page 531
container_title Journal of statistical theory and practice
container_volume 11
creator Hoxhaj, Valmira
Khattree, Ravindra
description We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided.
doi_str_mv 10.1080/15598608.2017.1299057
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15598608_2017_1299057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_15598608_2017_1299057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4MoOKePIOQFOpNmaVqv1OE_GMhQr0OapFtG24yczLEL392UqZdKLk7Oyfl-kA-hS0omlJTkinJelQUpJzmhYkLzqiJcHKHRMM_KghbHv3dSnqIzgDUhBSWMjdDnnd373uBFtsCb1ke4xq--s7i3O7wMarNyWrU4et8CbnzAcWWxArAAne0j9g02DmJw9TY636fV9LjtNkMDWKXgAYjKtbi2K_XhUkRihqFRUZ2jk0a1YC--6xi9P9y_zZ6y-cvj8-x2nmnGRcy4VlrXjDWisrkVgjUlsTVnxVQZSgteirwSVWW5yUU6ypg6lSRjanKmS83GiB9ydfAAwTZyE1ynwl5SIgeH8sehHDD57TBxxYGDtN8vbZBrvw3pm_AveHMAXZ-sdWrnQ2tkVPvWhyaoXjuQ7O-IL1qViok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hoxhaj, Valmira ; Khattree, Ravindra</creator><creatorcontrib>Hoxhaj, Valmira ; Khattree, Ravindra</creatorcontrib><description>We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided.</description><identifier>ISSN: 1559-8608</identifier><identifier>EISSN: 1559-8616</identifier><identifier>DOI: 10.1080/15598608.2017.1299057</identifier><language>eng</language><publisher>Cham: Taylor &amp; Francis</publisher><subject>62-09 ; Andrews plot ; arc length ; area of surface of revolution ; geometric curvature ; graphical testing ; Khattree-Naik curves ; Probability Theory and Stochastic Processes ; Statistical Theory and Methods ; Statistics ; tail behavior</subject><ispartof>Journal of statistical theory and practice, 2017-10, Vol.11 (4), p.531-552</ispartof><rights>2017 Grace Scientific Publishing, LLC 2017</rights><rights>Grace Scientific Publishing, LLC 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</citedby><cites>FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</cites><orcidid>0000-0002-9305-2365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/15598608.2017.1299057$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/15598608.2017.1299057$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hoxhaj, Valmira</creatorcontrib><creatorcontrib>Khattree, Ravindra</creatorcontrib><title>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</title><title>Journal of statistical theory and practice</title><addtitle>J Stat Theory Pract</addtitle><description>We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided.</description><subject>62-09</subject><subject>Andrews plot</subject><subject>arc length</subject><subject>area of surface of revolution</subject><subject>geometric curvature</subject><subject>graphical testing</subject><subject>Khattree-Naik curves</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>tail behavior</subject><issn>1559-8608</issn><issn>1559-8616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkN9KwzAUh4MoOKePIOQFOpNmaVqv1OE_GMhQr0OapFtG24yczLEL392UqZdKLk7Oyfl-kA-hS0omlJTkinJelQUpJzmhYkLzqiJcHKHRMM_KghbHv3dSnqIzgDUhBSWMjdDnnd373uBFtsCb1ke4xq--s7i3O7wMarNyWrU4et8CbnzAcWWxArAAne0j9g02DmJw9TY636fV9LjtNkMDWKXgAYjKtbi2K_XhUkRihqFRUZ2jk0a1YC--6xi9P9y_zZ6y-cvj8-x2nmnGRcy4VlrXjDWisrkVgjUlsTVnxVQZSgteirwSVWW5yUU6ypg6lSRjanKmS83GiB9ydfAAwTZyE1ynwl5SIgeH8sehHDD57TBxxYGDtN8vbZBrvw3pm_AveHMAXZ-sdWrnQ2tkVPvWhyaoXjuQ7O-IL1qViok</recordid><startdate>20171002</startdate><enddate>20171002</enddate><creator>Hoxhaj, Valmira</creator><creator>Khattree, Ravindra</creator><general>Taylor &amp; Francis</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9305-2365</orcidid></search><sort><creationdate>20171002</creationdate><title>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</title><author>Hoxhaj, Valmira ; Khattree, Ravindra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>62-09</topic><topic>Andrews plot</topic><topic>arc length</topic><topic>area of surface of revolution</topic><topic>geometric curvature</topic><topic>graphical testing</topic><topic>Khattree-Naik curves</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>tail behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoxhaj, Valmira</creatorcontrib><creatorcontrib>Khattree, Ravindra</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical theory and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoxhaj, Valmira</au><au>Khattree, Ravindra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</atitle><jtitle>Journal of statistical theory and practice</jtitle><stitle>J Stat Theory Pract</stitle><date>2017-10-02</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>531</spage><epage>552</epage><pages>531-552</pages><issn>1559-8608</issn><eissn>1559-8616</eissn><abstract>We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided.</abstract><cop>Cham</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15598608.2017.1299057</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9305-2365</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-8608
ispartof Journal of statistical theory and practice, 2017-10, Vol.11 (4), p.531-552
issn 1559-8608
1559-8616
language eng
recordid cdi_crossref_primary_10_1080_15598608_2017_1299057
source SpringerLink Journals - AutoHoldings
subjects 62-09
Andrews plot
arc length
area of surface of revolution
geometric curvature
graphical testing
Khattree-Naik curves
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Statistics
tail behavior
title Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Q-Q%20plots:%20Some%20new%20graphical%20tools%20for%20the%20assessment%20of%20distributional%20assumptions%20and%20the%20tail%20behavior%20of%20the%20data&rft.jtitle=Journal%20of%20statistical%20theory%20and%20practice&rft.au=Hoxhaj,%20Valmira&rft.date=2017-10-02&rft.volume=11&rft.issue=4&rft.spage=531&rft.epage=552&rft.pages=531-552&rft.issn=1559-8608&rft.eissn=1559-8616&rft_id=info:doi/10.1080/15598608.2017.1299057&rft_dat=%3Ccrossref_infor%3E10_1080_15598608_2017_1299057%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true