Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data
We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectl...
Gespeichert in:
Veröffentlicht in: | Journal of statistical theory and practice 2017-10, Vol.11 (4), p.531-552 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 552 |
---|---|
container_issue | 4 |
container_start_page | 531 |
container_title | Journal of statistical theory and practice |
container_volume | 11 |
creator | Hoxhaj, Valmira Khattree, Ravindra |
description | We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided. |
doi_str_mv | 10.1080/15598608.2017.1299057 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15598608_2017_1299057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_15598608_2017_1299057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4MoOKePIOQFOpNmaVqv1OE_GMhQr0OapFtG24yczLEL392UqZdKLk7Oyfl-kA-hS0omlJTkinJelQUpJzmhYkLzqiJcHKHRMM_KghbHv3dSnqIzgDUhBSWMjdDnnd373uBFtsCb1ke4xq--s7i3O7wMarNyWrU4et8CbnzAcWWxArAAne0j9g02DmJw9TY636fV9LjtNkMDWKXgAYjKtbi2K_XhUkRihqFRUZ2jk0a1YC--6xi9P9y_zZ6y-cvj8-x2nmnGRcy4VlrXjDWisrkVgjUlsTVnxVQZSgteirwSVWW5yUU6ypg6lSRjanKmS83GiB9ydfAAwTZyE1ynwl5SIgeH8sehHDD57TBxxYGDtN8vbZBrvw3pm_AveHMAXZ-sdWrnQ2tkVPvWhyaoXjuQ7O-IL1qViok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hoxhaj, Valmira ; Khattree, Ravindra</creator><creatorcontrib>Hoxhaj, Valmira ; Khattree, Ravindra</creatorcontrib><description>We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided.</description><identifier>ISSN: 1559-8608</identifier><identifier>EISSN: 1559-8616</identifier><identifier>DOI: 10.1080/15598608.2017.1299057</identifier><language>eng</language><publisher>Cham: Taylor & Francis</publisher><subject>62-09 ; Andrews plot ; arc length ; area of surface of revolution ; geometric curvature ; graphical testing ; Khattree-Naik curves ; Probability Theory and Stochastic Processes ; Statistical Theory and Methods ; Statistics ; tail behavior</subject><ispartof>Journal of statistical theory and practice, 2017-10, Vol.11 (4), p.531-552</ispartof><rights>2017 Grace Scientific Publishing, LLC 2017</rights><rights>Grace Scientific Publishing, LLC 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</citedby><cites>FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</cites><orcidid>0000-0002-9305-2365</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/15598608.2017.1299057$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/15598608.2017.1299057$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hoxhaj, Valmira</creatorcontrib><creatorcontrib>Khattree, Ravindra</creatorcontrib><title>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</title><title>Journal of statistical theory and practice</title><addtitle>J Stat Theory Pract</addtitle><description>We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided.</description><subject>62-09</subject><subject>Andrews plot</subject><subject>arc length</subject><subject>area of surface of revolution</subject><subject>geometric curvature</subject><subject>graphical testing</subject><subject>Khattree-Naik curves</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>tail behavior</subject><issn>1559-8608</issn><issn>1559-8616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkN9KwzAUh4MoOKePIOQFOpNmaVqv1OE_GMhQr0OapFtG24yczLEL392UqZdKLk7Oyfl-kA-hS0omlJTkinJelQUpJzmhYkLzqiJcHKHRMM_KghbHv3dSnqIzgDUhBSWMjdDnnd373uBFtsCb1ke4xq--s7i3O7wMarNyWrU4et8CbnzAcWWxArAAne0j9g02DmJw9TY636fV9LjtNkMDWKXgAYjKtbi2K_XhUkRihqFRUZ2jk0a1YC--6xi9P9y_zZ6y-cvj8-x2nmnGRcy4VlrXjDWisrkVgjUlsTVnxVQZSgteirwSVWW5yUU6ypg6lSRjanKmS83GiB9ydfAAwTZyE1ynwl5SIgeH8sehHDD57TBxxYGDtN8vbZBrvw3pm_AveHMAXZ-sdWrnQ2tkVPvWhyaoXjuQ7O-IL1qViok</recordid><startdate>20171002</startdate><enddate>20171002</enddate><creator>Hoxhaj, Valmira</creator><creator>Khattree, Ravindra</creator><general>Taylor & Francis</general><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9305-2365</orcidid></search><sort><creationdate>20171002</creationdate><title>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</title><author>Hoxhaj, Valmira ; Khattree, Ravindra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-5caccb33f79e2e773f80eb5364ad11658729799e5d27272addb2720174d23c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>62-09</topic><topic>Andrews plot</topic><topic>arc length</topic><topic>area of surface of revolution</topic><topic>geometric curvature</topic><topic>graphical testing</topic><topic>Khattree-Naik curves</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>tail behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoxhaj, Valmira</creatorcontrib><creatorcontrib>Khattree, Ravindra</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical theory and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoxhaj, Valmira</au><au>Khattree, Ravindra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data</atitle><jtitle>Journal of statistical theory and practice</jtitle><stitle>J Stat Theory Pract</stitle><date>2017-10-02</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>531</spage><epage>552</epage><pages>531-552</pages><issn>1559-8608</issn><eissn>1559-8616</eissn><abstract>We introduce some new approaches for the graphical assessment of distribution of the data that supplement the existing graphical methods. Analogous to Q-Q plots and P-P plots, we introduce plots based on arc length and area of surface of revolution of the density function. Thus, our method indirectly makes use not only of density assumed but also of the derivatives thereof. We illustrate, by using several examples, that these plots help us identify the correct distribution and also rule out the incorrect possibilities. We further consider the problem of assessing the behavior of the data toward the tail and develop graphical tools to identify the closest potential probability distribution for the tail. Examples based on real data are provided.</abstract><cop>Cham</cop><pub>Taylor & Francis</pub><doi>10.1080/15598608.2017.1299057</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9305-2365</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-8608 |
ispartof | Journal of statistical theory and practice, 2017-10, Vol.11 (4), p.531-552 |
issn | 1559-8608 1559-8616 |
language | eng |
recordid | cdi_crossref_primary_10_1080_15598608_2017_1299057 |
source | SpringerLink Journals - AutoHoldings |
subjects | 62-09 Andrews plot arc length area of surface of revolution geometric curvature graphical testing Khattree-Naik curves Probability Theory and Stochastic Processes Statistical Theory and Methods Statistics tail behavior |
title | Beyond Q-Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Q-Q%20plots:%20Some%20new%20graphical%20tools%20for%20the%20assessment%20of%20distributional%20assumptions%20and%20the%20tail%20behavior%20of%20the%20data&rft.jtitle=Journal%20of%20statistical%20theory%20and%20practice&rft.au=Hoxhaj,%20Valmira&rft.date=2017-10-02&rft.volume=11&rft.issue=4&rft.spage=531&rft.epage=552&rft.pages=531-552&rft.issn=1559-8608&rft.eissn=1559-8616&rft_id=info:doi/10.1080/15598608.2017.1299057&rft_dat=%3Ccrossref_infor%3E10_1080_15598608_2017_1299057%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |