ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells
A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in...
Gespeichert in:
Veröffentlicht in: | Autophagy 2016-06, Vol.12 (6), p.936-948 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 948 |
---|---|
container_issue | 6 |
container_start_page | 936 |
container_title | Autophagy |
container_volume | 12 |
creator | Karvela, Maria Baquero, Pablo Kuntz, Elodie M. Mukhopadhyay, Arunima Mitchell, Rebecca Allan, Elaine K. Chan, Edmond Kranc, Kamil R. Calabretta, Bruno Salomoni, Paolo Gottlieb, Eyal Holyoake, Tessa L. Helgason, G. Vignir |
description | A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34
+
progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. |
doi_str_mv | 10.1080/15548627.2016.1162359 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15548627_2016_1162359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27168493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</originalsourceid><addsrcrecordid>eNp9kNtuEzEQhi0Eogd4BJAfgA3r49o3iKqCFqkSXJRra-IdZ42868jeBOXt2ShtBDdczWj8H6yPkHesXbHWtB-ZUtJo3q14y_SKMc2Fsi_I5fHeGC3Uy_POuwtyVeuvthXaWP6aXPCOaSOtuCTDzeNdRwtudglmrBQnLJsDHXGGdU6xjh9oH0PAgtMcYY55ojD1tO7KPu4h0RzojyEm6DFthwiNH0oec80jNttc4xz3SD2mVN-QVwFSxbdP85r8_Prl8fa-efh-9-325qHxUpu54QastLzjOljvRZCBLRdU2mitlGVgfKuBSy-05VIHFMpYtUav9aL2KK7Jp1PudrcesffLvwskty1xhHJwGaL792WKg9vkvVtauZR8CVCnAF9yrQXD2ctad0TvntG7I3r3hH7xvf-7-Ox6Zr0IPp8EcQq5jPA7l9S7GQ4pl1Bg8rE68f-OPzpqllc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Karvela, Maria ; Baquero, Pablo ; Kuntz, Elodie M. ; Mukhopadhyay, Arunima ; Mitchell, Rebecca ; Allan, Elaine K. ; Chan, Edmond ; Kranc, Kamil R. ; Calabretta, Bruno ; Salomoni, Paolo ; Gottlieb, Eyal ; Holyoake, Tessa L. ; Helgason, G. Vignir</creator><creatorcontrib>Karvela, Maria ; Baquero, Pablo ; Kuntz, Elodie M. ; Mukhopadhyay, Arunima ; Mitchell, Rebecca ; Allan, Elaine K. ; Chan, Edmond ; Kranc, Kamil R. ; Calabretta, Bruno ; Salomoni, Paolo ; Gottlieb, Eyal ; Holyoake, Tessa L. ; Helgason, G. Vignir</creatorcontrib><description>A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34
+
progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2016.1162359</identifier><identifier>PMID: 27168493</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Animals ; Antigens, CD34 - metabolism ; ATG7 ; autophagy ; Autophagy - drug effects ; Autophagy-Related Protein 7 - metabolism ; Basic Research Papers ; Cell Differentiation - drug effects ; Cell Respiration - drug effects ; Cell Survival - drug effects ; chronic myeloid leukemia ; Citric Acid Cycle - drug effects ; Disease Models, Animal ; energy metabolism ; Energy Metabolism - drug effects ; erythroid differentiation ; Gene Deletion ; Gene Knockdown Techniques ; glycolysis ; Glycolysis - drug effects ; Hematopoietic Stem Cells - drug effects ; Hematopoietic Stem Cells - metabolism ; Humans ; K562 Cells ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Metabolic Flux Analysis ; Metabolome - drug effects ; Mice ; Mitochondria - drug effects ; Mitochondria - metabolism ; oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Philadelphia Chromosome ; Protein Kinase Inhibitors - pharmacology ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; Stem Cells - metabolism ; tyrosine kinase inhibitor</subject><ispartof>Autophagy, 2016-06, Vol.12 (6), p.936-948</ispartof><rights>2016 The Author(s). Published with license by Taylor & Francis Group, LLC © 2016 Maria Karvela, Pablo Baquero, Elodie M. Kuntz, Arunima Mukhopadhyay, Rebecca Mitchell, Elaine K. Allan, Edmond Chan, Kamil R. Kranc, Bruno Calabretta, Paolo Salomoni, Eyal Gottlieb, Tessa L. Holyoake, and G. Vignir Helgason. 2016</rights><rights>2016 The Author(s). Published with license by Taylor & Francis Group, LLC 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</citedby><cites>FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922442/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922442/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27168493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karvela, Maria</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Kuntz, Elodie M.</creatorcontrib><creatorcontrib>Mukhopadhyay, Arunima</creatorcontrib><creatorcontrib>Mitchell, Rebecca</creatorcontrib><creatorcontrib>Allan, Elaine K.</creatorcontrib><creatorcontrib>Chan, Edmond</creatorcontrib><creatorcontrib>Kranc, Kamil R.</creatorcontrib><creatorcontrib>Calabretta, Bruno</creatorcontrib><creatorcontrib>Salomoni, Paolo</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Holyoake, Tessa L.</creatorcontrib><creatorcontrib>Helgason, G. Vignir</creatorcontrib><title>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34
+
progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.</description><subject>Animals</subject><subject>Antigens, CD34 - metabolism</subject><subject>ATG7</subject><subject>autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy-Related Protein 7 - metabolism</subject><subject>Basic Research Papers</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Respiration - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>chronic myeloid leukemia</subject><subject>Citric Acid Cycle - drug effects</subject><subject>Disease Models, Animal</subject><subject>energy metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>erythroid differentiation</subject><subject>Gene Deletion</subject><subject>Gene Knockdown Techniques</subject><subject>glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Metabolic Flux Analysis</subject><subject>Metabolome - drug effects</subject><subject>Mice</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Philadelphia Chromosome</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stem Cells - metabolism</subject><subject>tyrosine kinase inhibitor</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kNtuEzEQhi0Eogd4BJAfgA3r49o3iKqCFqkSXJRra-IdZ42868jeBOXt2ShtBDdczWj8H6yPkHesXbHWtB-ZUtJo3q14y_SKMc2Fsi_I5fHeGC3Uy_POuwtyVeuvthXaWP6aXPCOaSOtuCTDzeNdRwtudglmrBQnLJsDHXGGdU6xjh9oH0PAgtMcYY55ojD1tO7KPu4h0RzojyEm6DFthwiNH0oec80jNttc4xz3SD2mVN-QVwFSxbdP85r8_Prl8fa-efh-9-325qHxUpu54QastLzjOljvRZCBLRdU2mitlGVgfKuBSy-05VIHFMpYtUav9aL2KK7Jp1PudrcesffLvwskty1xhHJwGaL792WKg9vkvVtauZR8CVCnAF9yrQXD2ctad0TvntG7I3r3hH7xvf-7-Ox6Zr0IPp8EcQq5jPA7l9S7GQ4pl1Bg8rE68f-OPzpqllc</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Karvela, Maria</creator><creator>Baquero, Pablo</creator><creator>Kuntz, Elodie M.</creator><creator>Mukhopadhyay, Arunima</creator><creator>Mitchell, Rebecca</creator><creator>Allan, Elaine K.</creator><creator>Chan, Edmond</creator><creator>Kranc, Kamil R.</creator><creator>Calabretta, Bruno</creator><creator>Salomoni, Paolo</creator><creator>Gottlieb, Eyal</creator><creator>Holyoake, Tessa L.</creator><creator>Helgason, G. Vignir</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160602</creationdate><title>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</title><author>Karvela, Maria ; Baquero, Pablo ; Kuntz, Elodie M. ; Mukhopadhyay, Arunima ; Mitchell, Rebecca ; Allan, Elaine K. ; Chan, Edmond ; Kranc, Kamil R. ; Calabretta, Bruno ; Salomoni, Paolo ; Gottlieb, Eyal ; Holyoake, Tessa L. ; Helgason, G. Vignir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antigens, CD34 - metabolism</topic><topic>ATG7</topic><topic>autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy-Related Protein 7 - metabolism</topic><topic>Basic Research Papers</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Respiration - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>chronic myeloid leukemia</topic><topic>Citric Acid Cycle - drug effects</topic><topic>Disease Models, Animal</topic><topic>energy metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>erythroid differentiation</topic><topic>Gene Deletion</topic><topic>Gene Knockdown Techniques</topic><topic>glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Metabolic Flux Analysis</topic><topic>Metabolome - drug effects</topic><topic>Mice</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Philadelphia Chromosome</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stem Cells - metabolism</topic><topic>tyrosine kinase inhibitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karvela, Maria</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Kuntz, Elodie M.</creatorcontrib><creatorcontrib>Mukhopadhyay, Arunima</creatorcontrib><creatorcontrib>Mitchell, Rebecca</creatorcontrib><creatorcontrib>Allan, Elaine K.</creatorcontrib><creatorcontrib>Chan, Edmond</creatorcontrib><creatorcontrib>Kranc, Kamil R.</creatorcontrib><creatorcontrib>Calabretta, Bruno</creatorcontrib><creatorcontrib>Salomoni, Paolo</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Holyoake, Tessa L.</creatorcontrib><creatorcontrib>Helgason, G. Vignir</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karvela, Maria</au><au>Baquero, Pablo</au><au>Kuntz, Elodie M.</au><au>Mukhopadhyay, Arunima</au><au>Mitchell, Rebecca</au><au>Allan, Elaine K.</au><au>Chan, Edmond</au><au>Kranc, Kamil R.</au><au>Calabretta, Bruno</au><au>Salomoni, Paolo</au><au>Gottlieb, Eyal</au><au>Holyoake, Tessa L.</au><au>Helgason, G. Vignir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2016-06-02</date><risdate>2016</risdate><volume>12</volume><issue>6</issue><spage>936</spage><epage>948</epage><pages>936-948</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34
+
progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>27168493</pmid><doi>10.1080/15548627.2016.1162359</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8627 |
ispartof | Autophagy, 2016-06, Vol.12 (6), p.936-948 |
issn | 1554-8627 1554-8635 |
language | eng |
recordid | cdi_crossref_primary_10_1080_15548627_2016_1162359 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Antigens, CD34 - metabolism ATG7 autophagy Autophagy - drug effects Autophagy-Related Protein 7 - metabolism Basic Research Papers Cell Differentiation - drug effects Cell Respiration - drug effects Cell Survival - drug effects chronic myeloid leukemia Citric Acid Cycle - drug effects Disease Models, Animal energy metabolism Energy Metabolism - drug effects erythroid differentiation Gene Deletion Gene Knockdown Techniques glycolysis Glycolysis - drug effects Hematopoietic Stem Cells - drug effects Hematopoietic Stem Cells - metabolism Humans K562 Cells Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology Metabolic Flux Analysis Metabolome - drug effects Mice Mitochondria - drug effects Mitochondria - metabolism oxidative phosphorylation Oxidative Phosphorylation - drug effects Philadelphia Chromosome Protein Kinase Inhibitors - pharmacology reactive oxygen species Reactive Oxygen Species - metabolism Stem Cells - metabolism tyrosine kinase inhibitor |
title | ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATG7%20regulates%20energy%20metabolism,%20differentiation%20and%20survival%20of%20Philadelphia-chromosome-positive%20cells&rft.jtitle=Autophagy&rft.au=Karvela,%20Maria&rft.date=2016-06-02&rft.volume=12&rft.issue=6&rft.spage=936&rft.epage=948&rft.pages=936-948&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2016.1162359&rft_dat=%3Cpubmed_cross%3E27168493%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27168493&rfr_iscdi=true |