ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells

A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2016-06, Vol.12 (6), p.936-948
Hauptverfasser: Karvela, Maria, Baquero, Pablo, Kuntz, Elodie M., Mukhopadhyay, Arunima, Mitchell, Rebecca, Allan, Elaine K., Chan, Edmond, Kranc, Kamil R., Calabretta, Bruno, Salomoni, Paolo, Gottlieb, Eyal, Holyoake, Tessa L., Helgason, G. Vignir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 6
container_start_page 936
container_title Autophagy
container_volume 12
creator Karvela, Maria
Baquero, Pablo
Kuntz, Elodie M.
Mukhopadhyay, Arunima
Mitchell, Rebecca
Allan, Elaine K.
Chan, Edmond
Kranc, Kamil R.
Calabretta, Bruno
Salomoni, Paolo
Gottlieb, Eyal
Holyoake, Tessa L.
Helgason, G. Vignir
description A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34 + progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.
doi_str_mv 10.1080/15548627.2016.1162359
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_15548627_2016_1162359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27168493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</originalsourceid><addsrcrecordid>eNp9kNtuEzEQhi0Eogd4BJAfgA3r49o3iKqCFqkSXJRra-IdZ42868jeBOXt2ShtBDdczWj8H6yPkHesXbHWtB-ZUtJo3q14y_SKMc2Fsi_I5fHeGC3Uy_POuwtyVeuvthXaWP6aXPCOaSOtuCTDzeNdRwtudglmrBQnLJsDHXGGdU6xjh9oH0PAgtMcYY55ojD1tO7KPu4h0RzojyEm6DFthwiNH0oec80jNttc4xz3SD2mVN-QVwFSxbdP85r8_Prl8fa-efh-9-325qHxUpu54QastLzjOljvRZCBLRdU2mitlGVgfKuBSy-05VIHFMpYtUav9aL2KK7Jp1PudrcesffLvwskty1xhHJwGaL792WKg9vkvVtauZR8CVCnAF9yrQXD2ctad0TvntG7I3r3hH7xvf-7-Ox6Zr0IPp8EcQq5jPA7l9S7GQ4pl1Bg8rE68f-OPzpqllc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Karvela, Maria ; Baquero, Pablo ; Kuntz, Elodie M. ; Mukhopadhyay, Arunima ; Mitchell, Rebecca ; Allan, Elaine K. ; Chan, Edmond ; Kranc, Kamil R. ; Calabretta, Bruno ; Salomoni, Paolo ; Gottlieb, Eyal ; Holyoake, Tessa L. ; Helgason, G. Vignir</creator><creatorcontrib>Karvela, Maria ; Baquero, Pablo ; Kuntz, Elodie M. ; Mukhopadhyay, Arunima ; Mitchell, Rebecca ; Allan, Elaine K. ; Chan, Edmond ; Kranc, Kamil R. ; Calabretta, Bruno ; Salomoni, Paolo ; Gottlieb, Eyal ; Holyoake, Tessa L. ; Helgason, G. Vignir</creatorcontrib><description>A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34 + progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.1080/15548627.2016.1162359</identifier><identifier>PMID: 27168493</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Animals ; Antigens, CD34 - metabolism ; ATG7 ; autophagy ; Autophagy - drug effects ; Autophagy-Related Protein 7 - metabolism ; Basic Research Papers ; Cell Differentiation - drug effects ; Cell Respiration - drug effects ; Cell Survival - drug effects ; chronic myeloid leukemia ; Citric Acid Cycle - drug effects ; Disease Models, Animal ; energy metabolism ; Energy Metabolism - drug effects ; erythroid differentiation ; Gene Deletion ; Gene Knockdown Techniques ; glycolysis ; Glycolysis - drug effects ; Hematopoietic Stem Cells - drug effects ; Hematopoietic Stem Cells - metabolism ; Humans ; K562 Cells ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology ; Metabolic Flux Analysis ; Metabolome - drug effects ; Mice ; Mitochondria - drug effects ; Mitochondria - metabolism ; oxidative phosphorylation ; Oxidative Phosphorylation - drug effects ; Philadelphia Chromosome ; Protein Kinase Inhibitors - pharmacology ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; Stem Cells - metabolism ; tyrosine kinase inhibitor</subject><ispartof>Autophagy, 2016-06, Vol.12 (6), p.936-948</ispartof><rights>2016 The Author(s). Published with license by Taylor &amp; Francis Group, LLC © 2016 Maria Karvela, Pablo Baquero, Elodie M. Kuntz, Arunima Mukhopadhyay, Rebecca Mitchell, Elaine K. Allan, Edmond Chan, Kamil R. Kranc, Bruno Calabretta, Paolo Salomoni, Eyal Gottlieb, Tessa L. Holyoake, and G. Vignir Helgason. 2016</rights><rights>2016 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</citedby><cites>FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922442/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922442/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27168493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karvela, Maria</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Kuntz, Elodie M.</creatorcontrib><creatorcontrib>Mukhopadhyay, Arunima</creatorcontrib><creatorcontrib>Mitchell, Rebecca</creatorcontrib><creatorcontrib>Allan, Elaine K.</creatorcontrib><creatorcontrib>Chan, Edmond</creatorcontrib><creatorcontrib>Kranc, Kamil R.</creatorcontrib><creatorcontrib>Calabretta, Bruno</creatorcontrib><creatorcontrib>Salomoni, Paolo</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Holyoake, Tessa L.</creatorcontrib><creatorcontrib>Helgason, G. Vignir</creatorcontrib><title>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34 + progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.</description><subject>Animals</subject><subject>Antigens, CD34 - metabolism</subject><subject>ATG7</subject><subject>autophagy</subject><subject>Autophagy - drug effects</subject><subject>Autophagy-Related Protein 7 - metabolism</subject><subject>Basic Research Papers</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Respiration - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>chronic myeloid leukemia</subject><subject>Citric Acid Cycle - drug effects</subject><subject>Disease Models, Animal</subject><subject>energy metabolism</subject><subject>Energy Metabolism - drug effects</subject><subject>erythroid differentiation</subject><subject>Gene Deletion</subject><subject>Gene Knockdown Techniques</subject><subject>glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humans</subject><subject>K562 Cells</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</subject><subject>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</subject><subject>Metabolic Flux Analysis</subject><subject>Metabolome - drug effects</subject><subject>Mice</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>oxidative phosphorylation</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Philadelphia Chromosome</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Stem Cells - metabolism</subject><subject>tyrosine kinase inhibitor</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kNtuEzEQhi0Eogd4BJAfgA3r49o3iKqCFqkSXJRra-IdZ42868jeBOXt2ShtBDdczWj8H6yPkHesXbHWtB-ZUtJo3q14y_SKMc2Fsi_I5fHeGC3Uy_POuwtyVeuvthXaWP6aXPCOaSOtuCTDzeNdRwtudglmrBQnLJsDHXGGdU6xjh9oH0PAgtMcYY55ojD1tO7KPu4h0RzojyEm6DFthwiNH0oec80jNttc4xz3SD2mVN-QVwFSxbdP85r8_Prl8fa-efh-9-325qHxUpu54QastLzjOljvRZCBLRdU2mitlGVgfKuBSy-05VIHFMpYtUav9aL2KK7Jp1PudrcesffLvwskty1xhHJwGaL792WKg9vkvVtauZR8CVCnAF9yrQXD2ctad0TvntG7I3r3hH7xvf-7-Ox6Zr0IPp8EcQq5jPA7l9S7GQ4pl1Bg8rE68f-OPzpqllc</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Karvela, Maria</creator><creator>Baquero, Pablo</creator><creator>Kuntz, Elodie M.</creator><creator>Mukhopadhyay, Arunima</creator><creator>Mitchell, Rebecca</creator><creator>Allan, Elaine K.</creator><creator>Chan, Edmond</creator><creator>Kranc, Kamil R.</creator><creator>Calabretta, Bruno</creator><creator>Salomoni, Paolo</creator><creator>Gottlieb, Eyal</creator><creator>Holyoake, Tessa L.</creator><creator>Helgason, G. Vignir</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20160602</creationdate><title>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</title><author>Karvela, Maria ; Baquero, Pablo ; Kuntz, Elodie M. ; Mukhopadhyay, Arunima ; Mitchell, Rebecca ; Allan, Elaine K. ; Chan, Edmond ; Kranc, Kamil R. ; Calabretta, Bruno ; Salomoni, Paolo ; Gottlieb, Eyal ; Holyoake, Tessa L. ; Helgason, G. Vignir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-28a9492726f9cc3f4f18a9e568665591a8c06a24c369246fe35895bec66c3fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antigens, CD34 - metabolism</topic><topic>ATG7</topic><topic>autophagy</topic><topic>Autophagy - drug effects</topic><topic>Autophagy-Related Protein 7 - metabolism</topic><topic>Basic Research Papers</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Respiration - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>chronic myeloid leukemia</topic><topic>Citric Acid Cycle - drug effects</topic><topic>Disease Models, Animal</topic><topic>energy metabolism</topic><topic>Energy Metabolism - drug effects</topic><topic>erythroid differentiation</topic><topic>Gene Deletion</topic><topic>Gene Knockdown Techniques</topic><topic>glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humans</topic><topic>K562 Cells</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism</topic><topic>Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology</topic><topic>Metabolic Flux Analysis</topic><topic>Metabolome - drug effects</topic><topic>Mice</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>oxidative phosphorylation</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Philadelphia Chromosome</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Stem Cells - metabolism</topic><topic>tyrosine kinase inhibitor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karvela, Maria</creatorcontrib><creatorcontrib>Baquero, Pablo</creatorcontrib><creatorcontrib>Kuntz, Elodie M.</creatorcontrib><creatorcontrib>Mukhopadhyay, Arunima</creatorcontrib><creatorcontrib>Mitchell, Rebecca</creatorcontrib><creatorcontrib>Allan, Elaine K.</creatorcontrib><creatorcontrib>Chan, Edmond</creatorcontrib><creatorcontrib>Kranc, Kamil R.</creatorcontrib><creatorcontrib>Calabretta, Bruno</creatorcontrib><creatorcontrib>Salomoni, Paolo</creatorcontrib><creatorcontrib>Gottlieb, Eyal</creatorcontrib><creatorcontrib>Holyoake, Tessa L.</creatorcontrib><creatorcontrib>Helgason, G. Vignir</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karvela, Maria</au><au>Baquero, Pablo</au><au>Kuntz, Elodie M.</au><au>Mukhopadhyay, Arunima</au><au>Mitchell, Rebecca</au><au>Allan, Elaine K.</au><au>Chan, Edmond</au><au>Kranc, Kamil R.</au><au>Calabretta, Bruno</au><au>Salomoni, Paolo</au><au>Gottlieb, Eyal</au><au>Holyoake, Tessa L.</au><au>Helgason, G. Vignir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2016-06-02</date><risdate>2016</risdate><volume>12</volume><issue>6</issue><spage>936</spage><epage>948</epage><pages>936-948</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34 + progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>27168493</pmid><doi>10.1080/15548627.2016.1162359</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2016-06, Vol.12 (6), p.936-948
issn 1554-8627
1554-8635
language eng
recordid cdi_crossref_primary_10_1080_15548627_2016_1162359
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Antigens, CD34 - metabolism
ATG7
autophagy
Autophagy - drug effects
Autophagy-Related Protein 7 - metabolism
Basic Research Papers
Cell Differentiation - drug effects
Cell Respiration - drug effects
Cell Survival - drug effects
chronic myeloid leukemia
Citric Acid Cycle - drug effects
Disease Models, Animal
energy metabolism
Energy Metabolism - drug effects
erythroid differentiation
Gene Deletion
Gene Knockdown Techniques
glycolysis
Glycolysis - drug effects
Hematopoietic Stem Cells - drug effects
Hematopoietic Stem Cells - metabolism
Humans
K562 Cells
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - metabolism
Leukemia, Myelogenous, Chronic, BCR-ABL Positive - pathology
Metabolic Flux Analysis
Metabolome - drug effects
Mice
Mitochondria - drug effects
Mitochondria - metabolism
oxidative phosphorylation
Oxidative Phosphorylation - drug effects
Philadelphia Chromosome
Protein Kinase Inhibitors - pharmacology
reactive oxygen species
Reactive Oxygen Species - metabolism
Stem Cells - metabolism
tyrosine kinase inhibitor
title ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATG7%20regulates%20energy%20metabolism,%20differentiation%20and%20survival%20of%20Philadelphia-chromosome-positive%20cells&rft.jtitle=Autophagy&rft.au=Karvela,%20Maria&rft.date=2016-06-02&rft.volume=12&rft.issue=6&rft.spage=936&rft.epage=948&rft.pages=936-948&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.1080/15548627.2016.1162359&rft_dat=%3Cpubmed_cross%3E27168493%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27168493&rfr_iscdi=true