Combined Use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows Software to Achieve High-Performance, High-Confidence, Mode of Action-Based Predictions of Chemical Carcinogenesis in Rodents

ABSTRACT This report describes a coordinated use of four quantitative structure-activity relationship (QSAR) programs and an expert knowledge base system to predict the occurrence and the mode of action of chemical carcinogenesis in rodents. QSAR models were based upon a weight-of-evidence paradigm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology mechanisms and methods 2008-01, Vol.18 (2-3), p.189-206
Hauptverfasser: Matthews, Edwin J., Kruhlak, Naomi L., Benz, R. Daniel, Contrera, Joseph F., Marchant, Carol A., Yang, Chihae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT This report describes a coordinated use of four quantitative structure-activity relationship (QSAR) programs and an expert knowledge base system to predict the occurrence and the mode of action of chemical carcinogenesis in rodents. QSAR models were based upon a weight-of-evidence paradigm of carcinogenic activity that was linked to chemical structures (n = 1,572). Identical training data sets were configured for four QSAR programs (MC4PC, MDL-QSAR, BioEpisteme, and Leadscope PDM), and QSAR models were constructed for the male rat, female rat, composite rat, male mouse, female mouse, composite mouse, and rodent composite endpoints. Model predictions were adjusted to favor high specificity (>80%). Performance was shown to be affected by the method used to score carcinogenicity study findings and the ratio of the number of active to inactive chemicals in the QSAR training data set. Results demonstrated that the four QSAR programs were complementary, each detecting different profiles of carcinogens. Accepting any positive prediction from two programs showed better overall performance than either of the single programs alone; specificity, sensitivity, and Chi-square values were 72.9%, 65.9%, and 223, respectively, compared to 84.5%, 45.8%, and 151. Accepting only consensus-positive predictions using any two programs had the best overall performance and higher confidence; specificity, sensitivity, and Chi-square values were 85.3%, 57.5%, and 287, respectively. Specific examples are provided to demonstrate that consensus-positive predictions of carcinogenicity by two QSAR programs identified both genotoxic and nongenotoxic carcinogens and that they detected 98.7% of the carcinogens linked in this study to Derek for Windows defined modes of action.
ISSN:1537-6516
1537-6524
DOI:10.1080/15376510701857379