An endogenous volatility approach to pricing and hedging call options with transaction costs

Standard delta hedging fails to exactly replicate a European call option in the presence of transaction costs. We study a pricing and hedging model similar to the delta hedging strategy with an endogenous volatility parameter for the calculation of delta over time. The endogenous volatility depends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantitative finance 2013-05, Vol.13 (5), p.699-712
Hauptverfasser: MacLean, Leonard C., Zhao, Yonggan, Ziemba, William T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue 5
container_start_page 699
container_title Quantitative finance
container_volume 13
creator MacLean, Leonard C.
Zhao, Yonggan
Ziemba, William T.
description Standard delta hedging fails to exactly replicate a European call option in the presence of transaction costs. We study a pricing and hedging model similar to the delta hedging strategy with an endogenous volatility parameter for the calculation of delta over time. The endogenous volatility depends on both the transaction costs and the option strike prices. The optimal hedging volatility is calculated using the criterion of minimizing the weighted upside and downside replication errors. The endogenous volatility model with equal weights on the up and down replication errors yields an option premium close to the Leland [J. Finance, 1985 , 40, 1283-1301] heuristic approach. The model with weights being the probabilities of the option's moneyness provides option prices closest to the actual prices. Option prices from the model are identical to the Black-Scholes option prices when transaction costs are zero. Data on S&P 500 index cash options from January to June 2008 illustrate the model.
doi_str_mv 10.1080/14697688.2011.639794
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14697688_2011_639794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2961134651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-3a0650486380fc7d22569ef36f8d03d76652c8d74bccff79468e2defa35884d93</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4DDwHPrclmN8mepBS_oOBFb0KI-WhTtsmapJb-e7OsevT0hsfMvDcDwDVGc4w4usU1bRnlfF4hjOeUtKytT8BkWM8YbenpH-b8HFyktEUINwi1E_C-8NB4HdbGh32CX6GT2XUuH6Hs-xik2sAcYB-dcn4NpddwY_R6wEp2HQx9dsEneHC5EKP0SaphA1VIOV2CMyu7ZK5-5hS8Pdy_Lp9mq5fH5-ViNVMEszwjEtEG1ZwSjqxiuqoa2hpLqOUaEc0obSrFNas_lLK2ZKPcVNpYSRrOa92SKbgZfcvHn3uTstiGffTlpMCk5pg2mKHCqkeWiiGlaKwosXYyHgVGYuhR_PYohh7F2GOR3Y0y522IO3kIsdMiy2MXoi2JlUuC_OvwDVEeenk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348165170</pqid></control><display><type>article</type><title>An endogenous volatility approach to pricing and hedging call options with transaction costs</title><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>MacLean, Leonard C. ; Zhao, Yonggan ; Ziemba, William T.</creator><creatorcontrib>MacLean, Leonard C. ; Zhao, Yonggan ; Ziemba, William T.</creatorcontrib><description>Standard delta hedging fails to exactly replicate a European call option in the presence of transaction costs. We study a pricing and hedging model similar to the delta hedging strategy with an endogenous volatility parameter for the calculation of delta over time. The endogenous volatility depends on both the transaction costs and the option strike prices. The optimal hedging volatility is calculated using the criterion of minimizing the weighted upside and downside replication errors. The endogenous volatility model with equal weights on the up and down replication errors yields an option premium close to the Leland [J. Finance, 1985 , 40, 1283-1301] heuristic approach. The model with weights being the probabilities of the option's moneyness provides option prices closest to the actual prices. Option prices from the model are identical to the Black-Scholes option prices when transaction costs are zero. Data on S&amp;P 500 index cash options from January to June 2008 illustrate the model.</description><identifier>ISSN: 1469-7688</identifier><identifier>EISSN: 1469-7696</identifier><identifier>DOI: 10.1080/14697688.2011.639794</identifier><language>eng</language><publisher>Bristol: Routledge</publisher><subject>Black-Scholes model ; Hedging ; Hedging errors ; Implied volatilities ; Option pricing ; Put &amp; call options ; Securities prices ; Studies ; Transaction costs ; Volatility</subject><ispartof>Quantitative finance, 2013-05, Vol.13 (5), p.699-712</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2013</rights><rights>Copyright American Institute of Physics 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-3a0650486380fc7d22569ef36f8d03d76652c8d74bccff79468e2defa35884d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/14697688.2011.639794$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/14697688.2011.639794$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>MacLean, Leonard C.</creatorcontrib><creatorcontrib>Zhao, Yonggan</creatorcontrib><creatorcontrib>Ziemba, William T.</creatorcontrib><title>An endogenous volatility approach to pricing and hedging call options with transaction costs</title><title>Quantitative finance</title><description>Standard delta hedging fails to exactly replicate a European call option in the presence of transaction costs. We study a pricing and hedging model similar to the delta hedging strategy with an endogenous volatility parameter for the calculation of delta over time. The endogenous volatility depends on both the transaction costs and the option strike prices. The optimal hedging volatility is calculated using the criterion of minimizing the weighted upside and downside replication errors. The endogenous volatility model with equal weights on the up and down replication errors yields an option premium close to the Leland [J. Finance, 1985 , 40, 1283-1301] heuristic approach. The model with weights being the probabilities of the option's moneyness provides option prices closest to the actual prices. Option prices from the model are identical to the Black-Scholes option prices when transaction costs are zero. Data on S&amp;P 500 index cash options from January to June 2008 illustrate the model.</description><subject>Black-Scholes model</subject><subject>Hedging</subject><subject>Hedging errors</subject><subject>Implied volatilities</subject><subject>Option pricing</subject><subject>Put &amp; call options</subject><subject>Securities prices</subject><subject>Studies</subject><subject>Transaction costs</subject><subject>Volatility</subject><issn>1469-7688</issn><issn>1469-7696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4DDwHPrclmN8mepBS_oOBFb0KI-WhTtsmapJb-e7OsevT0hsfMvDcDwDVGc4w4usU1bRnlfF4hjOeUtKytT8BkWM8YbenpH-b8HFyktEUINwi1E_C-8NB4HdbGh32CX6GT2XUuH6Hs-xik2sAcYB-dcn4NpddwY_R6wEp2HQx9dsEneHC5EKP0SaphA1VIOV2CMyu7ZK5-5hS8Pdy_Lp9mq5fH5-ViNVMEszwjEtEG1ZwSjqxiuqoa2hpLqOUaEc0obSrFNas_lLK2ZKPcVNpYSRrOa92SKbgZfcvHn3uTstiGffTlpMCk5pg2mKHCqkeWiiGlaKwosXYyHgVGYuhR_PYohh7F2GOR3Y0y522IO3kIsdMiy2MXoi2JlUuC_OvwDVEeenk</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>MacLean, Leonard C.</creator><creator>Zhao, Yonggan</creator><creator>Ziemba, William T.</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130501</creationdate><title>An endogenous volatility approach to pricing and hedging call options with transaction costs</title><author>MacLean, Leonard C. ; Zhao, Yonggan ; Ziemba, William T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-3a0650486380fc7d22569ef36f8d03d76652c8d74bccff79468e2defa35884d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Black-Scholes model</topic><topic>Hedging</topic><topic>Hedging errors</topic><topic>Implied volatilities</topic><topic>Option pricing</topic><topic>Put &amp; call options</topic><topic>Securities prices</topic><topic>Studies</topic><topic>Transaction costs</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacLean, Leonard C.</creatorcontrib><creatorcontrib>Zhao, Yonggan</creatorcontrib><creatorcontrib>Ziemba, William T.</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacLean, Leonard C.</au><au>Zhao, Yonggan</au><au>Ziemba, William T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An endogenous volatility approach to pricing and hedging call options with transaction costs</atitle><jtitle>Quantitative finance</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>13</volume><issue>5</issue><spage>699</spage><epage>712</epage><pages>699-712</pages><issn>1469-7688</issn><eissn>1469-7696</eissn><abstract>Standard delta hedging fails to exactly replicate a European call option in the presence of transaction costs. We study a pricing and hedging model similar to the delta hedging strategy with an endogenous volatility parameter for the calculation of delta over time. The endogenous volatility depends on both the transaction costs and the option strike prices. The optimal hedging volatility is calculated using the criterion of minimizing the weighted upside and downside replication errors. The endogenous volatility model with equal weights on the up and down replication errors yields an option premium close to the Leland [J. Finance, 1985 , 40, 1283-1301] heuristic approach. The model with weights being the probabilities of the option's moneyness provides option prices closest to the actual prices. Option prices from the model are identical to the Black-Scholes option prices when transaction costs are zero. Data on S&amp;P 500 index cash options from January to June 2008 illustrate the model.</abstract><cop>Bristol</cop><pub>Routledge</pub><doi>10.1080/14697688.2011.639794</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1469-7688
ispartof Quantitative finance, 2013-05, Vol.13 (5), p.699-712
issn 1469-7688
1469-7696
language eng
recordid cdi_crossref_primary_10_1080_14697688_2011_639794
source Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Black-Scholes model
Hedging
Hedging errors
Implied volatilities
Option pricing
Put & call options
Securities prices
Studies
Transaction costs
Volatility
title An endogenous volatility approach to pricing and hedging call options with transaction costs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20endogenous%20volatility%20approach%20to%20pricing%20and%20hedging%20call%20options%20with%20transaction%20costs&rft.jtitle=Quantitative%20finance&rft.au=MacLean,%20Leonard%20C.&rft.date=2013-05-01&rft.volume=13&rft.issue=5&rft.spage=699&rft.epage=712&rft.pages=699-712&rft.issn=1469-7688&rft.eissn=1469-7696&rft_id=info:doi/10.1080/14697688.2011.639794&rft_dat=%3Cproquest_cross%3E2961134651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348165170&rft_id=info:pmid/&rfr_iscdi=true