Disconnected Julia set of Halley's method for exponential maps

We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamical systems (London, England) England), 2022-04, Vol.37 (2), p.280-294
Hauptverfasser: Cumsille, Patricio, González-Marín, Juan, Honorato, Gerardo, Lugo, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 2
container_start_page 280
container_title Dynamical systems (London, England)
container_volume 37
creator Cumsille, Patricio
González-Marín, Juan
Honorato, Gerardo
Lugo, Diego
description We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.
doi_str_mv 10.1080/14689367.2022.2048633
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14689367_2022_2048633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671468260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-65d94e128ce87c2f57ff68bb4b9940123ce1e65723a62255530db3e00eb6fa313</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BCHgwVPXfDRJexFl_VhlwYueQ5pOsEub1KSL7r-3ZdWjl5lheN8Z3gehc0oWlBTkiuayKLlUC0YYG0teSM4P0GzaZyVX4vBvluoYnaS0IYSqnKoZur5rkg3egx2gxs_btjE4wYCDwyvTtrC7TLiD4T3U2IWI4asPHvzQmBZ3pk-n6MiZNsHZT5-jt4f71-UqW788Pi1v15llhRwyKeoyB8oKC4WyzAnlnCyqKq_KMieUcQsUpFCMG8mYEIKTuuJACFTSGU75HF3s7_YxfGwhDXoTttGPLzWTagrHJBlVYq-yMaQUwek-Np2JO02JnlDpX1R6QqV_UI2-m72v8WPIznyG2NZ6MLs2RBeNt03S_P8T370_bok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671468260</pqid></control><display><type>article</type><title>Disconnected Julia set of Halley's method for exponential maps</title><source>EBSCOhost Business Source Complete</source><creator>Cumsille, Patricio ; González-Marín, Juan ; Honorato, Gerardo ; Lugo, Diego</creator><creatorcontrib>Cumsille, Patricio ; González-Marín, Juan ; Honorato, Gerardo ; Lugo, Diego</creatorcontrib><description>We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689367.2022.2048633</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>complex dynamics ; Connectedness ; Entire functions ; Mathematical analysis ; Newton methods ; Polynomials ; Primary 37F10 ; root-finding algorithms ; Secondary 30D05</subject><ispartof>Dynamical systems (London, England), 2022-04, Vol.37 (2), p.280-294</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-65d94e128ce87c2f57ff68bb4b9940123ce1e65723a62255530db3e00eb6fa313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cumsille, Patricio</creatorcontrib><creatorcontrib>González-Marín, Juan</creatorcontrib><creatorcontrib>Honorato, Gerardo</creatorcontrib><creatorcontrib>Lugo, Diego</creatorcontrib><title>Disconnected Julia set of Halley's method for exponential maps</title><title>Dynamical systems (London, England)</title><description>We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.</description><subject>complex dynamics</subject><subject>Connectedness</subject><subject>Entire functions</subject><subject>Mathematical analysis</subject><subject>Newton methods</subject><subject>Polynomials</subject><subject>Primary 37F10</subject><subject>root-finding algorithms</subject><subject>Secondary 30D05</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BCHgwVPXfDRJexFl_VhlwYueQ5pOsEub1KSL7r-3ZdWjl5lheN8Z3gehc0oWlBTkiuayKLlUC0YYG0teSM4P0GzaZyVX4vBvluoYnaS0IYSqnKoZur5rkg3egx2gxs_btjE4wYCDwyvTtrC7TLiD4T3U2IWI4asPHvzQmBZ3pk-n6MiZNsHZT5-jt4f71-UqW788Pi1v15llhRwyKeoyB8oKC4WyzAnlnCyqKq_KMieUcQsUpFCMG8mYEIKTuuJACFTSGU75HF3s7_YxfGwhDXoTttGPLzWTagrHJBlVYq-yMaQUwek-Np2JO02JnlDpX1R6QqV_UI2-m72v8WPIznyG2NZ6MLs2RBeNt03S_P8T370_bok</recordid><startdate>20220403</startdate><enddate>20220403</enddate><creator>Cumsille, Patricio</creator><creator>González-Marín, Juan</creator><creator>Honorato, Gerardo</creator><creator>Lugo, Diego</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220403</creationdate><title>Disconnected Julia set of Halley's method for exponential maps</title><author>Cumsille, Patricio ; González-Marín, Juan ; Honorato, Gerardo ; Lugo, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-65d94e128ce87c2f57ff68bb4b9940123ce1e65723a62255530db3e00eb6fa313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>complex dynamics</topic><topic>Connectedness</topic><topic>Entire functions</topic><topic>Mathematical analysis</topic><topic>Newton methods</topic><topic>Polynomials</topic><topic>Primary 37F10</topic><topic>root-finding algorithms</topic><topic>Secondary 30D05</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cumsille, Patricio</creatorcontrib><creatorcontrib>González-Marín, Juan</creatorcontrib><creatorcontrib>Honorato, Gerardo</creatorcontrib><creatorcontrib>Lugo, Diego</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cumsille, Patricio</au><au>González-Marín, Juan</au><au>Honorato, Gerardo</au><au>Lugo, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disconnected Julia set of Halley's method for exponential maps</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2022-04-03</date><risdate>2022</risdate><volume>37</volume><issue>2</issue><spage>280</spage><epage>294</epage><pages>280-294</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/14689367.2022.2048633</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-9367
ispartof Dynamical systems (London, England), 2022-04, Vol.37 (2), p.280-294
issn 1468-9367
1468-9375
language eng
recordid cdi_crossref_primary_10_1080_14689367_2022_2048633
source EBSCOhost Business Source Complete
subjects complex dynamics
Connectedness
Entire functions
Mathematical analysis
Newton methods
Polynomials
Primary 37F10
root-finding algorithms
Secondary 30D05
title Disconnected Julia set of Halley's method for exponential maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disconnected%20Julia%20set%20of%20Halley's%20method%20for%20exponential%20maps&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Cumsille,%20Patricio&rft.date=2022-04-03&rft.volume=37&rft.issue=2&rft.spage=280&rft.epage=294&rft.pages=280-294&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689367.2022.2048633&rft_dat=%3Cproquest_cross%3E2671468260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671468260&rft_id=info:pmid/&rfr_iscdi=true