Disconnected Julia set of Halley's method for exponential maps
We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form where p and q are polynomials and q is non-constant. We also describe the nature of the fixed poin...
Gespeichert in:
Veröffentlicht in: | Dynamical systems (London, England) England), 2022-04, Vol.37 (2), p.280-294 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 2 |
container_start_page | 280 |
container_title | Dynamical systems (London, England) |
container_volume | 37 |
creator | Cumsille, Patricio González-Marín, Juan Honorato, Gerardo Lugo, Diego |
description | We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form
where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions. |
doi_str_mv | 10.1080/14689367.2022.2048633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14689367_2022_2048633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2671468260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-65d94e128ce87c2f57ff68bb4b9940123ce1e65723a62255530db3e00eb6fa313</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BCHgwVPXfDRJexFl_VhlwYueQ5pOsEub1KSL7r-3ZdWjl5lheN8Z3gehc0oWlBTkiuayKLlUC0YYG0teSM4P0GzaZyVX4vBvluoYnaS0IYSqnKoZur5rkg3egx2gxs_btjE4wYCDwyvTtrC7TLiD4T3U2IWI4asPHvzQmBZ3pk-n6MiZNsHZT5-jt4f71-UqW788Pi1v15llhRwyKeoyB8oKC4WyzAnlnCyqKq_KMieUcQsUpFCMG8mYEIKTuuJACFTSGU75HF3s7_YxfGwhDXoTttGPLzWTagrHJBlVYq-yMaQUwek-Np2JO02JnlDpX1R6QqV_UI2-m72v8WPIznyG2NZ6MLs2RBeNt03S_P8T370_bok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2671468260</pqid></control><display><type>article</type><title>Disconnected Julia set of Halley's method for exponential maps</title><source>EBSCOhost Business Source Complete</source><creator>Cumsille, Patricio ; González-Marín, Juan ; Honorato, Gerardo ; Lugo, Diego</creator><creatorcontrib>Cumsille, Patricio ; González-Marín, Juan ; Honorato, Gerardo ; Lugo, Diego</creatorcontrib><description>We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form
where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689367.2022.2048633</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>complex dynamics ; Connectedness ; Entire functions ; Mathematical analysis ; Newton methods ; Polynomials ; Primary 37F10 ; root-finding algorithms ; Secondary 30D05</subject><ispartof>Dynamical systems (London, England), 2022-04, Vol.37 (2), p.280-294</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-65d94e128ce87c2f57ff68bb4b9940123ce1e65723a62255530db3e00eb6fa313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cumsille, Patricio</creatorcontrib><creatorcontrib>González-Marín, Juan</creatorcontrib><creatorcontrib>Honorato, Gerardo</creatorcontrib><creatorcontrib>Lugo, Diego</creatorcontrib><title>Disconnected Julia set of Halley's method for exponential maps</title><title>Dynamical systems (London, England)</title><description>We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form
where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.</description><subject>complex dynamics</subject><subject>Connectedness</subject><subject>Entire functions</subject><subject>Mathematical analysis</subject><subject>Newton methods</subject><subject>Polynomials</subject><subject>Primary 37F10</subject><subject>root-finding algorithms</subject><subject>Secondary 30D05</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BCHgwVPXfDRJexFl_VhlwYueQ5pOsEub1KSL7r-3ZdWjl5lheN8Z3gehc0oWlBTkiuayKLlUC0YYG0teSM4P0GzaZyVX4vBvluoYnaS0IYSqnKoZur5rkg3egx2gxs_btjE4wYCDwyvTtrC7TLiD4T3U2IWI4asPHvzQmBZ3pk-n6MiZNsHZT5-jt4f71-UqW788Pi1v15llhRwyKeoyB8oKC4WyzAnlnCyqKq_KMieUcQsUpFCMG8mYEIKTuuJACFTSGU75HF3s7_YxfGwhDXoTttGPLzWTagrHJBlVYq-yMaQUwek-Np2JO02JnlDpX1R6QqV_UI2-m72v8WPIznyG2NZ6MLs2RBeNt03S_P8T370_bok</recordid><startdate>20220403</startdate><enddate>20220403</enddate><creator>Cumsille, Patricio</creator><creator>González-Marín, Juan</creator><creator>Honorato, Gerardo</creator><creator>Lugo, Diego</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220403</creationdate><title>Disconnected Julia set of Halley's method for exponential maps</title><author>Cumsille, Patricio ; González-Marín, Juan ; Honorato, Gerardo ; Lugo, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-65d94e128ce87c2f57ff68bb4b9940123ce1e65723a62255530db3e00eb6fa313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>complex dynamics</topic><topic>Connectedness</topic><topic>Entire functions</topic><topic>Mathematical analysis</topic><topic>Newton methods</topic><topic>Polynomials</topic><topic>Primary 37F10</topic><topic>root-finding algorithms</topic><topic>Secondary 30D05</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cumsille, Patricio</creatorcontrib><creatorcontrib>González-Marín, Juan</creatorcontrib><creatorcontrib>Honorato, Gerardo</creatorcontrib><creatorcontrib>Lugo, Diego</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cumsille, Patricio</au><au>González-Marín, Juan</au><au>Honorato, Gerardo</au><au>Lugo, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disconnected Julia set of Halley's method for exponential maps</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2022-04-03</date><risdate>2022</risdate><volume>37</volume><issue>2</issue><spage>280</spage><epage>294</epage><pages>280-294</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>We investigate the Halley method of exponential maps. Our main result is that, unlike Newton's method, the Julia set of Halley's method may be disconnected when applied to entire maps of form
where p and q are polynomials and q is non-constant. We also describe the nature of the fixed points and classify rational Halley's maps of entire functions.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/14689367.2022.2048633</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-9367 |
ispartof | Dynamical systems (London, England), 2022-04, Vol.37 (2), p.280-294 |
issn | 1468-9367 1468-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1080_14689367_2022_2048633 |
source | EBSCOhost Business Source Complete |
subjects | complex dynamics Connectedness Entire functions Mathematical analysis Newton methods Polynomials Primary 37F10 root-finding algorithms Secondary 30D05 |
title | Disconnected Julia set of Halley's method for exponential maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disconnected%20Julia%20set%20of%20Halley's%20method%20for%20exponential%20maps&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Cumsille,%20Patricio&rft.date=2022-04-03&rft.volume=37&rft.issue=2&rft.spage=280&rft.epage=294&rft.pages=280-294&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689367.2022.2048633&rft_dat=%3Cproquest_cross%3E2671468260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2671468260&rft_id=info:pmid/&rfr_iscdi=true |