Stochastic uniform observability of general linear differential equations

The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamical systems (London, England) England), 2008-09, Vol.23 (3), p.333-350
1. Verfasser: Mariela Ungureanu, Viorica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 3
container_start_page 333
container_title Dynamical systems (London, England)
container_volume 23
creator Mariela Ungureanu, Viorica
description The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory.
doi_str_mv 10.1080/14689360802275773
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14689360802275773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35569352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKsfwNuevFWTzW6yBS9S_FMoeFDP4SX7opF00yZZtd_eLRUvRTy9YZjfPBhCzhm9ZLShV6wSzZSLQZalrKXkB2S09SZTLuvDXy3kMTlJ6Z1SJismR2T-lIN5g5SdKfrO2RCXRdAJ4wdo513eFMEWr9hhBF941yHEonXWYsQuu8HDdQ_ZhS6dkiMLPuHZzx2Tl7vb59nDZPF4P5_dLCaGS5knAA0KQKZlWWMjAMpWG21raKUAi0JozijVQkspG1oJZkqDXFe6pBqlEXxMLna9qxjWPaasli4Z9B46DH1SvK7FlNflEGS7oIkhpYhWraJbQtwoRtV2NLU32sDIHeO67RTwGaJvVYaND9FG6IxL-5TKX3kgr_8l-d-PvwEOWoao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35569352</pqid></control><display><type>article</type><title>Stochastic uniform observability of general linear differential equations</title><source>EBSCOhost Business Source Complete</source><creator>Mariela Ungureanu, Viorica</creator><creatorcontrib>Mariela Ungureanu, Viorica</creatorcontrib><description>The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689360802275773</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>covariance operators ; Hilbert Schmidt spaces ; stochastic differential equations ; stochastic uniform observability</subject><ispartof>Dynamical systems (London, England), 2008-09, Vol.23 (3), p.333-350</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</citedby><cites>FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mariela Ungureanu, Viorica</creatorcontrib><title>Stochastic uniform observability of general linear differential equations</title><title>Dynamical systems (London, England)</title><description>The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory.</description><subject>covariance operators</subject><subject>Hilbert Schmidt spaces</subject><subject>stochastic differential equations</subject><subject>stochastic uniform observability</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKsfwNuevFWTzW6yBS9S_FMoeFDP4SX7opF00yZZtd_eLRUvRTy9YZjfPBhCzhm9ZLShV6wSzZSLQZalrKXkB2S09SZTLuvDXy3kMTlJ6Z1SJismR2T-lIN5g5SdKfrO2RCXRdAJ4wdo513eFMEWr9hhBF941yHEonXWYsQuu8HDdQ_ZhS6dkiMLPuHZzx2Tl7vb59nDZPF4P5_dLCaGS5knAA0KQKZlWWMjAMpWG21raKUAi0JozijVQkspG1oJZkqDXFe6pBqlEXxMLna9qxjWPaasli4Z9B46DH1SvK7FlNflEGS7oIkhpYhWraJbQtwoRtV2NLU32sDIHeO67RTwGaJvVYaND9FG6IxL-5TKX3kgr_8l-d-PvwEOWoao</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Mariela Ungureanu, Viorica</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Stochastic uniform observability of general linear differential equations</title><author>Mariela Ungureanu, Viorica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>covariance operators</topic><topic>Hilbert Schmidt spaces</topic><topic>stochastic differential equations</topic><topic>stochastic uniform observability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariela Ungureanu, Viorica</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariela Ungureanu, Viorica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic uniform observability of general linear differential equations</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>23</volume><issue>3</issue><spage>333</spage><epage>350</epage><pages>333-350</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/14689360802275773</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-9367
ispartof Dynamical systems (London, England), 2008-09, Vol.23 (3), p.333-350
issn 1468-9367
1468-9375
language eng
recordid cdi_crossref_primary_10_1080_14689360802275773
source EBSCOhost Business Source Complete
subjects covariance operators
Hilbert Schmidt spaces
stochastic differential equations
stochastic uniform observability
title Stochastic uniform observability of general linear differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20uniform%20observability%20of%20general%20linear%20differential%20equations&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Mariela%20Ungureanu,%20Viorica&rft.date=2008-09-01&rft.volume=23&rft.issue=3&rft.spage=333&rft.epage=350&rft.pages=333-350&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689360802275773&rft_dat=%3Cproquest_cross%3E35569352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35569352&rft_id=info:pmid/&rfr_iscdi=true