Stochastic uniform observability of general linear differential equations
The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representatio...
Gespeichert in:
Veröffentlicht in: | Dynamical systems (London, England) England), 2008-09, Vol.23 (3), p.333-350 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 3 |
container_start_page | 333 |
container_title | Dynamical systems (London, England) |
container_volume | 23 |
creator | Mariela Ungureanu, Viorica |
description | The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory. |
doi_str_mv | 10.1080/14689360802275773 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14689360802275773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35569352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</originalsourceid><addsrcrecordid>eNqFkE9LAzEUxIMoWKsfwNuevFWTzW6yBS9S_FMoeFDP4SX7opF00yZZtd_eLRUvRTy9YZjfPBhCzhm9ZLShV6wSzZSLQZalrKXkB2S09SZTLuvDXy3kMTlJ6Z1SJismR2T-lIN5g5SdKfrO2RCXRdAJ4wdo513eFMEWr9hhBF941yHEonXWYsQuu8HDdQ_ZhS6dkiMLPuHZzx2Tl7vb59nDZPF4P5_dLCaGS5knAA0KQKZlWWMjAMpWG21raKUAi0JozijVQkspG1oJZkqDXFe6pBqlEXxMLna9qxjWPaasli4Z9B46DH1SvK7FlNflEGS7oIkhpYhWraJbQtwoRtV2NLU32sDIHeO67RTwGaJvVYaND9FG6IxL-5TKX3kgr_8l-d-PvwEOWoao</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35569352</pqid></control><display><type>article</type><title>Stochastic uniform observability of general linear differential equations</title><source>EBSCOhost Business Source Complete</source><creator>Mariela Ungureanu, Viorica</creator><creatorcontrib>Mariela Ungureanu, Viorica</creatorcontrib><description>The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory.</description><identifier>ISSN: 1468-9367</identifier><identifier>EISSN: 1468-9375</identifier><identifier>DOI: 10.1080/14689360802275773</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>covariance operators ; Hilbert Schmidt spaces ; stochastic differential equations ; stochastic uniform observability</subject><ispartof>Dynamical systems (London, England), 2008-09, Vol.23 (3), p.333-350</ispartof><rights>Copyright Taylor & Francis Group, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</citedby><cites>FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mariela Ungureanu, Viorica</creatorcontrib><title>Stochastic uniform observability of general linear differential equations</title><title>Dynamical systems (London, England)</title><description>The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory.</description><subject>covariance operators</subject><subject>Hilbert Schmidt spaces</subject><subject>stochastic differential equations</subject><subject>stochastic uniform observability</subject><issn>1468-9367</issn><issn>1468-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEUxIMoWKsfwNuevFWTzW6yBS9S_FMoeFDP4SX7opF00yZZtd_eLRUvRTy9YZjfPBhCzhm9ZLShV6wSzZSLQZalrKXkB2S09SZTLuvDXy3kMTlJ6Z1SJismR2T-lIN5g5SdKfrO2RCXRdAJ4wdo513eFMEWr9hhBF941yHEonXWYsQuu8HDdQ_ZhS6dkiMLPuHZzx2Tl7vb59nDZPF4P5_dLCaGS5knAA0KQKZlWWMjAMpWG21raKUAi0JozijVQkspG1oJZkqDXFe6pBqlEXxMLna9qxjWPaasli4Z9B46DH1SvK7FlNflEGS7oIkhpYhWraJbQtwoRtV2NLU32sDIHeO67RTwGaJvVYaND9FG6IxL-5TKX3kgr_8l-d-PvwEOWoao</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Mariela Ungureanu, Viorica</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080901</creationdate><title>Stochastic uniform observability of general linear differential equations</title><author>Mariela Ungureanu, Viorica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-aa8e6ae1b725e86aa2dbcbf5ad76afe66b3100b6b77780461c2ce3b4b20be7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>covariance operators</topic><topic>Hilbert Schmidt spaces</topic><topic>stochastic differential equations</topic><topic>stochastic uniform observability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariela Ungureanu, Viorica</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Dynamical systems (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariela Ungureanu, Viorica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic uniform observability of general linear differential equations</atitle><jtitle>Dynamical systems (London, England)</jtitle><date>2008-09-01</date><risdate>2008</risdate><volume>23</volume><issue>3</issue><spage>333</spage><epage>350</epage><pages>333-350</pages><issn>1468-9367</issn><eissn>1468-9375</eissn><abstract>The aim of this article is to discuss the uniform observability property of general linear differential equations with multiplicative white noise in Hilbert spaces. Based on perturbation theory for evolution operators on Hilbert Schmidt spaces and on the space of nuclear operators, new representations of the covariance operators associated to the mild solutions of the investigated stochastic differential equations are given. Using these results we obtain deterministic characterizations of the stochastic uniform observability property. We also identify an entire class of stochastic differential equations which are never stochastic uniformly observable. Some examples will illustrate the theory.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/14689360802275773</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-9367 |
ispartof | Dynamical systems (London, England), 2008-09, Vol.23 (3), p.333-350 |
issn | 1468-9367 1468-9375 |
language | eng |
recordid | cdi_crossref_primary_10_1080_14689360802275773 |
source | EBSCOhost Business Source Complete |
subjects | covariance operators Hilbert Schmidt spaces stochastic differential equations stochastic uniform observability |
title | Stochastic uniform observability of general linear differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20uniform%20observability%20of%20general%20linear%20differential%20equations&rft.jtitle=Dynamical%20systems%20(London,%20England)&rft.au=Mariela%20Ungureanu,%20Viorica&rft.date=2008-09-01&rft.volume=23&rft.issue=3&rft.spage=333&rft.epage=350&rft.pages=333-350&rft.issn=1468-9367&rft.eissn=1468-9375&rft_id=info:doi/10.1080/14689360802275773&rft_dat=%3Cproquest_cross%3E35569352%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35569352&rft_id=info:pmid/&rfr_iscdi=true |