Solving the constrained modified KP hierarchy by gauge transformations

In this paper, we mainly investigate two kinds of gauge transformations for the constrained modified KP hierarchy in Kupershmidt-Kiso version. The corresponding gauge transformations are required to keep not only the Lax equation but also the Lax operator. For this, by selecting the special generati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2019-01, Vol.26 (1), p.54-68
Hauptverfasser: Chen, Huizhan, Geng, Lumin, Li, Na, Cheng, Jipeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 54
container_title Journal of nonlinear mathematical physics
container_volume 26
creator Chen, Huizhan
Geng, Lumin
Li, Na
Cheng, Jipeng
description In this paper, we mainly investigate two kinds of gauge transformations for the constrained modified KP hierarchy in Kupershmidt-Kiso version. The corresponding gauge transformations are required to keep not only the Lax equation but also the Lax operator. For this, by selecting the special generating eigenfunction and adjoint eigenfunction, the elementary gauge transformation operators of modified KP hierarchy T D (Φ) = (Φ − 1 ) − x 1 ∂ Φ − 1 and T I (Ψ) = Ψ − 1 ∂ − 1 Ψ x , become the ones in the constrained case. Finally, the corresponding successive applications of T D and T I on the eigenfunction Φ and the adjoint eigenfunction Ψ are discussed.
doi_str_mv 10.1080/14029251.2019.1544787
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_14029251_2019_1544787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921035472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-6b1e0e0172de842492544886ed06062947f4873cce90e5488b0e994e67a88b973</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_QSj43HmTpkn6pgynoqCgPoesve0ytmYmndJ_b2YnvulTDuQ7J-Ej5JzChIKCS8qBFSynEwa0mNCcc6nkARlRKUUKKmeHMUcm3UHH5CSEJUAmhVIjMntxqw_bNkm3wKR0bei8sS1WydpVtrYxPDwnC4ve-HLRJ_M-acy2wSRibaidX5vOxtYpOarNKuDZ_hyTt9nN6_QufXy6vZ9eP6Ylz1iXijlFQKCSVag44_FDnCslsAIBghVc1lzJrCyxAMzjzRywKDgKaWIuZDYmF8Puxrv3LYZOL93Wt_FJHRVQyHIuWaTygSq9C8FjrTfero3vNQW9U6Z_lOmdMr1XFnti6IXItw363_X_ildD0bbfTj6dX1W6M_3K-TqaKm3Q2d8TX_QNgWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921035472</pqid></control><display><type>article</type><title>Solving the constrained modified KP hierarchy by gauge transformations</title><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Huizhan ; Geng, Lumin ; Li, Na ; Cheng, Jipeng</creator><creatorcontrib>Chen, Huizhan ; Geng, Lumin ; Li, Na ; Cheng, Jipeng</creatorcontrib><description>In this paper, we mainly investigate two kinds of gauge transformations for the constrained modified KP hierarchy in Kupershmidt-Kiso version. The corresponding gauge transformations are required to keep not only the Lax equation but also the Lax operator. For this, by selecting the special generating eigenfunction and adjoint eigenfunction, the elementary gauge transformation operators of modified KP hierarchy T D (Φ) = (Φ − 1 ) − x 1 ∂ Φ − 1 and T I (Ψ) = Ψ − 1 ∂ − 1 Ψ x , become the ones in the constrained case. Finally, the corresponding successive applications of T D and T I on the eigenfunction Φ and the adjoint eigenfunction Ψ are discussed.</description><identifier>ISSN: 1402-9251</identifier><identifier>ISSN: 1776-0852</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1080/14029251.2019.1544787</identifier><language>eng</language><publisher>Dordrecht: Taylor &amp; Francis</publisher><subject>Eigenvectors ; gauge transformations ; Research Article ; successive applications ; The constrained mKP hierarchy</subject><ispartof>Journal of nonlinear mathematical physics, 2019-01, Vol.26 (1), p.54-68</ispartof><rights>2018 The Authors 2018</rights><rights>the authors 2019</rights><rights>the authors 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-6b1e0e0172de842492544886ed06062947f4873cce90e5488b0e994e67a88b973</citedby><cites>FETCH-LOGICAL-c432t-6b1e0e0172de842492544886ed06062947f4873cce90e5488b0e994e67a88b973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/14029251.2019.1544787$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/14029251.2019.1544787$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Huizhan</creatorcontrib><creatorcontrib>Geng, Lumin</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Cheng, Jipeng</creatorcontrib><title>Solving the constrained modified KP hierarchy by gauge transformations</title><title>Journal of nonlinear mathematical physics</title><addtitle>J Nonlinear Math Phys</addtitle><description>In this paper, we mainly investigate two kinds of gauge transformations for the constrained modified KP hierarchy in Kupershmidt-Kiso version. The corresponding gauge transformations are required to keep not only the Lax equation but also the Lax operator. For this, by selecting the special generating eigenfunction and adjoint eigenfunction, the elementary gauge transformation operators of modified KP hierarchy T D (Φ) = (Φ − 1 ) − x 1 ∂ Φ − 1 and T I (Ψ) = Ψ − 1 ∂ − 1 Ψ x , become the ones in the constrained case. Finally, the corresponding successive applications of T D and T I on the eigenfunction Φ and the adjoint eigenfunction Ψ are discussed.</description><subject>Eigenvectors</subject><subject>gauge transformations</subject><subject>Research Article</subject><subject>successive applications</subject><subject>The constrained mKP hierarchy</subject><issn>1402-9251</issn><issn>1776-0852</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkFFLwzAUhYMoOKc_QSj43HmTpkn6pgynoqCgPoesve0ytmYmndJ_b2YnvulTDuQ7J-Ej5JzChIKCS8qBFSynEwa0mNCcc6nkARlRKUUKKmeHMUcm3UHH5CSEJUAmhVIjMntxqw_bNkm3wKR0bei8sS1WydpVtrYxPDwnC4ve-HLRJ_M-acy2wSRibaidX5vOxtYpOarNKuDZ_hyTt9nN6_QufXy6vZ9eP6Ylz1iXijlFQKCSVag44_FDnCslsAIBghVc1lzJrCyxAMzjzRywKDgKaWIuZDYmF8Puxrv3LYZOL93Wt_FJHRVQyHIuWaTygSq9C8FjrTfero3vNQW9U6Z_lOmdMr1XFnti6IXItw363_X_ildD0bbfTj6dX1W6M_3K-TqaKm3Q2d8TX_QNgWo</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Chen, Huizhan</creator><creator>Geng, Lumin</creator><creator>Li, Na</creator><creator>Cheng, Jipeng</creator><general>Taylor &amp; Francis</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190102</creationdate><title>Solving the constrained modified KP hierarchy by gauge transformations</title><author>Chen, Huizhan ; Geng, Lumin ; Li, Na ; Cheng, Jipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-6b1e0e0172de842492544886ed06062947f4873cce90e5488b0e994e67a88b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Eigenvectors</topic><topic>gauge transformations</topic><topic>Research Article</topic><topic>successive applications</topic><topic>The constrained mKP hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huizhan</creatorcontrib><creatorcontrib>Geng, Lumin</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Cheng, Jipeng</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huizhan</au><au>Geng, Lumin</au><au>Li, Na</au><au>Cheng, Jipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the constrained modified KP hierarchy by gauge transformations</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><stitle>J Nonlinear Math Phys</stitle><date>2019-01-02</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><spage>54</spage><epage>68</epage><pages>54-68</pages><issn>1402-9251</issn><issn>1776-0852</issn><eissn>1776-0852</eissn><abstract>In this paper, we mainly investigate two kinds of gauge transformations for the constrained modified KP hierarchy in Kupershmidt-Kiso version. The corresponding gauge transformations are required to keep not only the Lax equation but also the Lax operator. For this, by selecting the special generating eigenfunction and adjoint eigenfunction, the elementary gauge transformation operators of modified KP hierarchy T D (Φ) = (Φ − 1 ) − x 1 ∂ Φ − 1 and T I (Ψ) = Ψ − 1 ∂ − 1 Ψ x , become the ones in the constrained case. Finally, the corresponding successive applications of T D and T I on the eigenfunction Φ and the adjoint eigenfunction Ψ are discussed.</abstract><cop>Dordrecht</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/14029251.2019.1544787</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1402-9251
ispartof Journal of nonlinear mathematical physics, 2019-01, Vol.26 (1), p.54-68
issn 1402-9251
1776-0852
1776-0852
language eng
recordid cdi_crossref_primary_10_1080_14029251_2019_1544787
source SpringerLink Journals; EZB-FREE-00999 freely available EZB journals
subjects Eigenvectors
gauge transformations
Research Article
successive applications
The constrained mKP hierarchy
title Solving the constrained modified KP hierarchy by gauge transformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20constrained%20modified%20KP%20hierarchy%20by%20gauge%20transformations&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Chen,%20Huizhan&rft.date=2019-01-02&rft.volume=26&rft.issue=1&rft.spage=54&rft.epage=68&rft.pages=54-68&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.1080/14029251.2019.1544787&rft_dat=%3Cproquest_cross%3E2921035472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921035472&rft_id=info:pmid/&rfr_iscdi=true