SPSLiDAR: towards a multi-purpose repository for large scale LiDAR datasets
The widespread use of LiDAR technology in a multitude of domains has produced a growing availability of massive high-resolution point datasets that demand new approaches for efficient organization and storage, filtering using different spatio-temporal criteria, selective/progressive visualization, p...
Gespeichert in:
Veröffentlicht in: | International journal of geographical information science : IJGIS 2022-05, Vol.36 (5), p.992-1011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1011 |
---|---|
container_issue | 5 |
container_start_page | 992 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 36 |
creator | Rueda-Ruiz, Antonio J. Ogáyar-Anguita, Carlos J. Segura-Sánchez, Rafael J. Béjar-Martos, Juan A. Delgado-Garcia, Jorge |
description | The widespread use of LiDAR technology in a multitude of domains has produced a growing availability of massive high-resolution point datasets that demand new approaches for efficient organization and storage, filtering using different spatio-temporal criteria, selective/progressive visualization, processing and analysis, and collaborative editing. Ideally, LiDAR data coming from multiple sources and organized in different datasets should be accessible in a simple, uniform, and ubiquitous way to comply with the FAIR principle proposed by the Open Geospatial Consortium: Findable, Accessible, Interoperable, and Reusable. With this goal in mind, we present SPSLiDAR, a conceptual model with a simple interface for repositories of LiDAR data that can be adapted to the needs of different applications. SPSLiDAR includes aspects, such as the arrangement of related datasets into workspaces on a world scale, support for overlapping datasets with different resolutions or acquired at different times, and hierarchical organization of point data, enabling levels of detail and selective download. We also describe in detail an implementation of this model aimed at visualization and downloading of large datasets using the MongoDB database. Finally, we show some experimental results of this implementation using real data, such as its space requirements, upload latency, access latency, and throughput. |
doi_str_mv | 10.1080/13658816.2022.2030479 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2022_2030479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_13658816_2022_2030479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-64234d60344709862d84e3be0abece2b03672f99906ca0f8801893252c35b0973</originalsourceid><addsrcrecordid>eNp9kN1KAzEQRoMoWGofQcgLbJ38bDbxylK1iguK1euQzWYlsG1KklL69m5t9dKb-YaB88EchK4JTAlIuCFMlFISMaVA6TAY8EqdodHhXkhJ-fnfTsQlmqTkG6BMKimrcoRelm_L2t_P3m9xDjsT24QNXm377IvNNm5Ccji6IXwOcY-7EHFv4pfDyZre4R8Styab5HK6Qhed6ZObnHKMPh8fPuZPRf26eJ7P6sIyArkQnDLeCmCcV6CkoK3kjjUOTOOsow0wUdFOKQXCGuikBCIVoyW1rGxAVWyMymOvjSGl6Dq9iX5l4l4T0Acp-leKPkjRJykDd3fk_Hp4ZGV2Ifatzmbfh9hFs7Y-afZ_xTcJ8Wb1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SPSLiDAR: towards a multi-purpose repository for large scale LiDAR datasets</title><source>Access via Taylor & Francis</source><source>Alma/SFX Local Collection</source><creator>Rueda-Ruiz, Antonio J. ; Ogáyar-Anguita, Carlos J. ; Segura-Sánchez, Rafael J. ; Béjar-Martos, Juan A. ; Delgado-Garcia, Jorge</creator><creatorcontrib>Rueda-Ruiz, Antonio J. ; Ogáyar-Anguita, Carlos J. ; Segura-Sánchez, Rafael J. ; Béjar-Martos, Juan A. ; Delgado-Garcia, Jorge</creatorcontrib><description>The widespread use of LiDAR technology in a multitude of domains has produced a growing availability of massive high-resolution point datasets that demand new approaches for efficient organization and storage, filtering using different spatio-temporal criteria, selective/progressive visualization, processing and analysis, and collaborative editing. Ideally, LiDAR data coming from multiple sources and organized in different datasets should be accessible in a simple, uniform, and ubiquitous way to comply with the FAIR principle proposed by the Open Geospatial Consortium: Findable, Accessible, Interoperable, and Reusable. With this goal in mind, we present SPSLiDAR, a conceptual model with a simple interface for repositories of LiDAR data that can be adapted to the needs of different applications. SPSLiDAR includes aspects, such as the arrangement of related datasets into workspaces on a world scale, support for overlapping datasets with different resolutions or acquired at different times, and hierarchical organization of point data, enabling levels of detail and selective download. We also describe in detail an implementation of this model aimed at visualization and downloading of large datasets using the MongoDB database. Finally, we show some experimental results of this implementation using real data, such as its space requirements, upload latency, access latency, and throughput.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1365-8824</identifier><identifier>EISSN: 1362-3087</identifier><identifier>DOI: 10.1080/13658816.2022.2030479</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>big data ; LiDAR ; NoSQL ; point cloud ; spatial data structure</subject><ispartof>International journal of geographical information science : IJGIS, 2022-05, Vol.36 (5), p.992-1011</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-64234d60344709862d84e3be0abece2b03672f99906ca0f8801893252c35b0973</citedby><cites>FETCH-LOGICAL-c310t-64234d60344709862d84e3be0abece2b03672f99906ca0f8801893252c35b0973</cites><orcidid>0000-0001-7692-454X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2022.2030479$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2022.2030479$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,59652,60441</link.rule.ids></links><search><creatorcontrib>Rueda-Ruiz, Antonio J.</creatorcontrib><creatorcontrib>Ogáyar-Anguita, Carlos J.</creatorcontrib><creatorcontrib>Segura-Sánchez, Rafael J.</creatorcontrib><creatorcontrib>Béjar-Martos, Juan A.</creatorcontrib><creatorcontrib>Delgado-Garcia, Jorge</creatorcontrib><title>SPSLiDAR: towards a multi-purpose repository for large scale LiDAR datasets</title><title>International journal of geographical information science : IJGIS</title><description>The widespread use of LiDAR technology in a multitude of domains has produced a growing availability of massive high-resolution point datasets that demand new approaches for efficient organization and storage, filtering using different spatio-temporal criteria, selective/progressive visualization, processing and analysis, and collaborative editing. Ideally, LiDAR data coming from multiple sources and organized in different datasets should be accessible in a simple, uniform, and ubiquitous way to comply with the FAIR principle proposed by the Open Geospatial Consortium: Findable, Accessible, Interoperable, and Reusable. With this goal in mind, we present SPSLiDAR, a conceptual model with a simple interface for repositories of LiDAR data that can be adapted to the needs of different applications. SPSLiDAR includes aspects, such as the arrangement of related datasets into workspaces on a world scale, support for overlapping datasets with different resolutions or acquired at different times, and hierarchical organization of point data, enabling levels of detail and selective download. We also describe in detail an implementation of this model aimed at visualization and downloading of large datasets using the MongoDB database. Finally, we show some experimental results of this implementation using real data, such as its space requirements, upload latency, access latency, and throughput.</description><subject>big data</subject><subject>LiDAR</subject><subject>NoSQL</subject><subject>point cloud</subject><subject>spatial data structure</subject><issn>1365-8816</issn><issn>1365-8824</issn><issn>1362-3087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQRoMoWGofQcgLbJ38bDbxylK1iguK1euQzWYlsG1KklL69m5t9dKb-YaB88EchK4JTAlIuCFMlFISMaVA6TAY8EqdodHhXkhJ-fnfTsQlmqTkG6BMKimrcoRelm_L2t_P3m9xDjsT24QNXm377IvNNm5Ccji6IXwOcY-7EHFv4pfDyZre4R8Styab5HK6Qhed6ZObnHKMPh8fPuZPRf26eJ7P6sIyArkQnDLeCmCcV6CkoK3kjjUOTOOsow0wUdFOKQXCGuikBCIVoyW1rGxAVWyMymOvjSGl6Dq9iX5l4l4T0Acp-leKPkjRJykDd3fk_Hp4ZGV2Ifatzmbfh9hFs7Y-afZ_xTcJ8Wb1</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Rueda-Ruiz, Antonio J.</creator><creator>Ogáyar-Anguita, Carlos J.</creator><creator>Segura-Sánchez, Rafael J.</creator><creator>Béjar-Martos, Juan A.</creator><creator>Delgado-Garcia, Jorge</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7692-454X</orcidid></search><sort><creationdate>20220504</creationdate><title>SPSLiDAR: towards a multi-purpose repository for large scale LiDAR datasets</title><author>Rueda-Ruiz, Antonio J. ; Ogáyar-Anguita, Carlos J. ; Segura-Sánchez, Rafael J. ; Béjar-Martos, Juan A. ; Delgado-Garcia, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-64234d60344709862d84e3be0abece2b03672f99906ca0f8801893252c35b0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>big data</topic><topic>LiDAR</topic><topic>NoSQL</topic><topic>point cloud</topic><topic>spatial data structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rueda-Ruiz, Antonio J.</creatorcontrib><creatorcontrib>Ogáyar-Anguita, Carlos J.</creatorcontrib><creatorcontrib>Segura-Sánchez, Rafael J.</creatorcontrib><creatorcontrib>Béjar-Martos, Juan A.</creatorcontrib><creatorcontrib>Delgado-Garcia, Jorge</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rueda-Ruiz, Antonio J.</au><au>Ogáyar-Anguita, Carlos J.</au><au>Segura-Sánchez, Rafael J.</au><au>Béjar-Martos, Juan A.</au><au>Delgado-Garcia, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPSLiDAR: towards a multi-purpose repository for large scale LiDAR datasets</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2022-05-04</date><risdate>2022</risdate><volume>36</volume><issue>5</issue><spage>992</spage><epage>1011</epage><pages>992-1011</pages><issn>1365-8816</issn><eissn>1365-8824</eissn><eissn>1362-3087</eissn><abstract>The widespread use of LiDAR technology in a multitude of domains has produced a growing availability of massive high-resolution point datasets that demand new approaches for efficient organization and storage, filtering using different spatio-temporal criteria, selective/progressive visualization, processing and analysis, and collaborative editing. Ideally, LiDAR data coming from multiple sources and organized in different datasets should be accessible in a simple, uniform, and ubiquitous way to comply with the FAIR principle proposed by the Open Geospatial Consortium: Findable, Accessible, Interoperable, and Reusable. With this goal in mind, we present SPSLiDAR, a conceptual model with a simple interface for repositories of LiDAR data that can be adapted to the needs of different applications. SPSLiDAR includes aspects, such as the arrangement of related datasets into workspaces on a world scale, support for overlapping datasets with different resolutions or acquired at different times, and hierarchical organization of point data, enabling levels of detail and selective download. We also describe in detail an implementation of this model aimed at visualization and downloading of large datasets using the MongoDB database. Finally, we show some experimental results of this implementation using real data, such as its space requirements, upload latency, access latency, and throughput.</abstract><pub>Taylor & Francis</pub><doi>10.1080/13658816.2022.2030479</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7692-454X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2022-05, Vol.36 (5), p.992-1011 |
issn | 1365-8816 1365-8824 1362-3087 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13658816_2022_2030479 |
source | Access via Taylor & Francis; Alma/SFX Local Collection |
subjects | big data LiDAR NoSQL point cloud spatial data structure |
title | SPSLiDAR: towards a multi-purpose repository for large scale LiDAR datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPSLiDAR:%20towards%20a%20multi-purpose%20repository%20for%20large%20scale%20LiDAR%20datasets&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Rueda-Ruiz,%20Antonio%20J.&rft.date=2022-05-04&rft.volume=36&rft.issue=5&rft.spage=992&rft.epage=1011&rft.pages=992-1011&rft.issn=1365-8816&rft.eissn=1365-8824&rft_id=info:doi/10.1080/13658816.2022.2030479&rft_dat=%3Ccrossref_infor%3E10_1080_13658816_2022_2030479%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |