An interactive detector for spatial associations

Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2021-08, Vol.35 (8), p.1676-1701
Hauptverfasser: Song, Yongze, Wu, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1701
container_issue 8
container_start_page 1676
container_title International journal of geographical information science : IJGIS
container_volume 35
creator Song, Yongze
Wu, Peng
description Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable.
doi_str_mv 10.1080/13658816.2021.1882680
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2021_1882680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549027437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgqf0JwoLnrfnYdF9ulqJWKHjpPSTpW4hsNzVJlf57U7dePTzeY5iZxwwh94zOGQX6yMRCArDFnFPO5gyAL4BekUnBeS0otNe_t6zPpFsyS8lbygUogFZOCF0OlR8yRuOy_8JqhxldDrHqyqSDyd70lUkpOF_uMKQ7ctOZPuHssqdk-_K8Xa3rzfvr22q5qZ0QkOuGCWmBCQSkAo2k1kGjFOzQ2g45FAAbWxIYpSyTEhUXtO1UywvfSTElD6PtIYbPI6asP8IxDuWj5rJRlLeNaAtLjiwXQ0oRO32Ifm_iSTOqz_Xov3r0uR59qafonkadH0rOvfkOsd_pbE59iF00g_NJi_8tfgAamWql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549027437</pqid></control><display><type>article</type><title>An interactive detector for spatial associations</title><source>Taylor &amp; Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Song, Yongze ; Wu, Peng</creator><creatorcontrib>Song, Yongze ; Wu, Peng</creatorcontrib><description>Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2021.1882680</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Division ; geographical detector ; Independent variables ; Interaction effect ; Sensors ; spatial association ; spatial fuzzy overlay ; spatial heterogeneity ; Variables</subject><ispartof>International journal of geographical information science : IJGIS, 2021-08, Vol.35 (8), p.1676-1701</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</citedby><cites>FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</cites><orcidid>0000-0002-3793-0653 ; 0000-0003-3420-9622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2021.1882680$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2021.1882680$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Song, Yongze</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><title>An interactive detector for spatial associations</title><title>International journal of geographical information science : IJGIS</title><description>Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable.</description><subject>Division</subject><subject>geographical detector</subject><subject>Independent variables</subject><subject>Interaction effect</subject><subject>Sensors</subject><subject>spatial association</subject><subject>spatial fuzzy overlay</subject><subject>spatial heterogeneity</subject><subject>Variables</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgqf0JwoLnrfnYdF9ulqJWKHjpPSTpW4hsNzVJlf57U7dePTzeY5iZxwwh94zOGQX6yMRCArDFnFPO5gyAL4BekUnBeS0otNe_t6zPpFsyS8lbygUogFZOCF0OlR8yRuOy_8JqhxldDrHqyqSDyd70lUkpOF_uMKQ7ctOZPuHssqdk-_K8Xa3rzfvr22q5qZ0QkOuGCWmBCQSkAo2k1kGjFOzQ2g45FAAbWxIYpSyTEhUXtO1UywvfSTElD6PtIYbPI6asP8IxDuWj5rJRlLeNaAtLjiwXQ0oRO32Ifm_iSTOqz_Xov3r0uR59qafonkadH0rOvfkOsd_pbE59iF00g_NJi_8tfgAamWql</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Song, Yongze</creator><creator>Wu, Peng</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3793-0653</orcidid><orcidid>https://orcid.org/0000-0003-3420-9622</orcidid></search><sort><creationdate>20210803</creationdate><title>An interactive detector for spatial associations</title><author>Song, Yongze ; Wu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Division</topic><topic>geographical detector</topic><topic>Independent variables</topic><topic>Interaction effect</topic><topic>Sensors</topic><topic>spatial association</topic><topic>spatial fuzzy overlay</topic><topic>spatial heterogeneity</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yongze</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yongze</au><au>Wu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interactive detector for spatial associations</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2021-08-03</date><risdate>2021</risdate><volume>35</volume><issue>8</issue><spage>1676</spage><epage>1701</epage><pages>1676-1701</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2021.1882680</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3793-0653</orcidid><orcidid>https://orcid.org/0000-0003-3420-9622</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2021-08, Vol.35 (8), p.1676-1701
issn 1365-8816
1362-3087
1365-8824
language eng
recordid cdi_crossref_primary_10_1080_13658816_2021_1882680
source Taylor & Francis Journals Complete; Alma/SFX Local Collection
subjects Division
geographical detector
Independent variables
Interaction effect
Sensors
spatial association
spatial fuzzy overlay
spatial heterogeneity
Variables
title An interactive detector for spatial associations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interactive%20detector%20for%20spatial%20associations&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Song,%20Yongze&rft.date=2021-08-03&rft.volume=35&rft.issue=8&rft.spage=1676&rft.epage=1701&rft.pages=1676-1701&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2021.1882680&rft_dat=%3Cproquest_cross%3E2549027437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549027437&rft_id=info:pmid/&rfr_iscdi=true