An interactive detector for spatial associations
Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model...
Gespeichert in:
Veröffentlicht in: | International journal of geographical information science : IJGIS 2021-08, Vol.35 (8), p.1676-1701 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1701 |
---|---|
container_issue | 8 |
container_start_page | 1676 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 35 |
creator | Song, Yongze Wu, Peng |
description | Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable. |
doi_str_mv | 10.1080/13658816.2021.1882680 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2021_1882680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549027437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgqf0JwoLnrfnYdF9ulqJWKHjpPSTpW4hsNzVJlf57U7dePTzeY5iZxwwh94zOGQX6yMRCArDFnFPO5gyAL4BekUnBeS0otNe_t6zPpFsyS8lbygUogFZOCF0OlR8yRuOy_8JqhxldDrHqyqSDyd70lUkpOF_uMKQ7ctOZPuHssqdk-_K8Xa3rzfvr22q5qZ0QkOuGCWmBCQSkAo2k1kGjFOzQ2g45FAAbWxIYpSyTEhUXtO1UywvfSTElD6PtIYbPI6asP8IxDuWj5rJRlLeNaAtLjiwXQ0oRO32Ifm_iSTOqz_Xov3r0uR59qafonkadH0rOvfkOsd_pbE59iF00g_NJi_8tfgAamWql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549027437</pqid></control><display><type>article</type><title>An interactive detector for spatial associations</title><source>Taylor & Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Song, Yongze ; Wu, Peng</creator><creatorcontrib>Song, Yongze ; Wu, Peng</creatorcontrib><description>Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2021.1882680</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Division ; geographical detector ; Independent variables ; Interaction effect ; Sensors ; spatial association ; spatial fuzzy overlay ; spatial heterogeneity ; Variables</subject><ispartof>International journal of geographical information science : IJGIS, 2021-08, Vol.35 (8), p.1676-1701</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</citedby><cites>FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</cites><orcidid>0000-0002-3793-0653 ; 0000-0003-3420-9622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2021.1882680$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2021.1882680$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Song, Yongze</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><title>An interactive detector for spatial associations</title><title>International journal of geographical information science : IJGIS</title><description>Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable.</description><subject>Division</subject><subject>geographical detector</subject><subject>Independent variables</subject><subject>Interaction effect</subject><subject>Sensors</subject><subject>spatial association</subject><subject>spatial fuzzy overlay</subject><subject>spatial heterogeneity</subject><subject>Variables</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgqf0JwoLnrfnYdF9ulqJWKHjpPSTpW4hsNzVJlf57U7dePTzeY5iZxwwh94zOGQX6yMRCArDFnFPO5gyAL4BekUnBeS0otNe_t6zPpFsyS8lbygUogFZOCF0OlR8yRuOy_8JqhxldDrHqyqSDyd70lUkpOF_uMKQ7ctOZPuHssqdk-_K8Xa3rzfvr22q5qZ0QkOuGCWmBCQSkAo2k1kGjFOzQ2g45FAAbWxIYpSyTEhUXtO1UywvfSTElD6PtIYbPI6asP8IxDuWj5rJRlLeNaAtLjiwXQ0oRO32Ifm_iSTOqz_Xov3r0uR59qafonkadH0rOvfkOsd_pbE59iF00g_NJi_8tfgAamWql</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Song, Yongze</creator><creator>Wu, Peng</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3793-0653</orcidid><orcidid>https://orcid.org/0000-0003-3420-9622</orcidid></search><sort><creationdate>20210803</creationdate><title>An interactive detector for spatial associations</title><author>Song, Yongze ; Wu, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-4135b813e8e03ea50bc84998debbfe2850be4b108a99b155e92307f972e03c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Division</topic><topic>geographical detector</topic><topic>Independent variables</topic><topic>Interaction effect</topic><topic>Sensors</topic><topic>spatial association</topic><topic>spatial fuzzy overlay</topic><topic>spatial heterogeneity</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yongze</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yongze</au><au>Wu, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interactive detector for spatial associations</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2021-08-03</date><risdate>2021</risdate><volume>35</volume><issue>8</issue><spage>1676</spage><epage>1701</epage><pages>1676-1701</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Geographical variables are usually not independent of each other. Hence, it is necessary to investigate the effect of interactions among explanatory variables on a response variable to characterize spatially enhanced or weakened relationships among all variables. The geographical detector (GD) model identifies zones for each explanatory variable, divides the study area into spatial units by overlapping these zones, and quantifies spatial associations as the power of interactive determinant (PID) between a response variable and explanatory variables. Consequently, the PID values depend upon the distributions of explanatory variables (i.e. spatial characteristics) and the subsequent division of spatial units out of these explanatory variables. This study has therefore proposed an Interactive Detector for Spatial Associations (IDSA) to optimize spatial division and improve PID. IDSA utilizes spatial autocorrelation of each explanatory variable and optimizes spatial units based on spatial fuzzy overlay to compute PID. We test the IDSA on both a simulation study and practical case that analyzes road deterioration in Australia. Results showed that the IDSA model could effectively assess the PID while existing GD overestimated PID. Hence, the IDSA improves the GD with refined spatial units based on explanatory variables to enhance their local spatial associations with a response variable.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2021.1882680</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3793-0653</orcidid><orcidid>https://orcid.org/0000-0003-3420-9622</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2021-08, Vol.35 (8), p.1676-1701 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13658816_2021_1882680 |
source | Taylor & Francis Journals Complete; Alma/SFX Local Collection |
subjects | Division geographical detector Independent variables Interaction effect Sensors spatial association spatial fuzzy overlay spatial heterogeneity Variables |
title | An interactive detector for spatial associations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interactive%20detector%20for%20spatial%20associations&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Song,%20Yongze&rft.date=2021-08-03&rft.volume=35&rft.issue=8&rft.spage=1676&rft.epage=1701&rft.pages=1676-1701&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2021.1882680&rft_dat=%3Cproquest_cross%3E2549027437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549027437&rft_id=info:pmid/&rfr_iscdi=true |