A topic model based framework for identifying the distribution of demand for relief supplies using social media data

Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2021-11, Vol.35 (11), p.2216-2237
Hauptverfasser: Zhang, Ting, Shen, Shi, Cheng, Changxiu, Su, Kai, Zhang, Xiangxue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2237
container_issue 11
container_start_page 2216
container_title International journal of geographical information science : IJGIS
container_volume 35
creator Zhang, Ting
Shen, Shi
Cheng, Changxiu
Su, Kai
Zhang, Xiangxue
description Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand for relief supplies and provides a way to obtain information on disaster areas. Therefore, we present a topic model-based framework and establish a demand dictionary and a gazetteer that aims to identify the spatial distribution of the demand for relief supplies by using social media data. Taking the 2013 Typhoon Haiyan (also called Yolanda) as a case study, we identify the potential topics of tweets with the biterm topic model, screen the tweets related to demands, and obtain the demand and location information from tweets to study the distribution of the relief supplies needs. The results show that, based on the demand dictionary, a gazetteer and the biterm topic model, the effective demand for relief supplies can be extracted from tweets. The proposed framework is feasible for the identification of accurate demand information and its distribution. Further, this framework can be applied to other types of disaster responses and can facilitate relief operations.
doi_str_mv 10.1080/13658816.2020.1869746
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2020_1869746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_13658816_2020_1869746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-c9c21fda83c975588b039f96b5de699b30cf645c1860f9f9475129718a0ee6ee3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhRdRsNQ-gpAX2JpsmmxyZyn-QcEbvQ7ZZKLB3c2SpEjf3mytt17NcGbOgfNV1S3Ba4IFviOUMyEIXze4KZLgst3wi2pR9KamWLSXp53V89N1tUrJd7ihQgrRskWVtyiHyRs0BAs96nQCi1zUA3yH-IVciMhbGLN3Rz9-oPwJyPqUo-8O2YcRBYcsDHq0p9cIvQeH0mGaypLQIc2mFIzXPRrAeo2szvqmunK6T7A6z2X1_vjwtnuu969PL7vtvjaUtbk20jTEWS2okS0rLTtMpZO8Yxa4lB3FxvENM6U0duWwaRlpZEuExgAcgC4r9ptrYkgpglNT9IOOR0WwmumpP3pqpqfO9Irv_tfnx9Jq0AVFb1XWxz7EwmY0Pin6f8QPSFt4bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A topic model based framework for identifying the distribution of demand for relief supplies using social media data</title><source>Taylor &amp; Francis Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Ting ; Shen, Shi ; Cheng, Changxiu ; Su, Kai ; Zhang, Xiangxue</creator><creatorcontrib>Zhang, Ting ; Shen, Shi ; Cheng, Changxiu ; Su, Kai ; Zhang, Xiangxue</creatorcontrib><description>Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand for relief supplies and provides a way to obtain information on disaster areas. Therefore, we present a topic model-based framework and establish a demand dictionary and a gazetteer that aims to identify the spatial distribution of the demand for relief supplies by using social media data. Taking the 2013 Typhoon Haiyan (also called Yolanda) as a case study, we identify the potential topics of tweets with the biterm topic model, screen the tweets related to demands, and obtain the demand and location information from tweets to study the distribution of the relief supplies needs. The results show that, based on the demand dictionary, a gazetteer and the biterm topic model, the effective demand for relief supplies can be extracted from tweets. The proposed framework is feasible for the identification of accurate demand information and its distribution. Further, this framework can be applied to other types of disaster responses and can facilitate relief operations.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>DOI: 10.1080/13658816.2020.1869746</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>btm ; Demand for relief supplies ; emergency management ; nature disaster ; social media ; twitter</subject><ispartof>International journal of geographical information science : IJGIS, 2021-11, Vol.35 (11), p.2216-2237</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-c9c21fda83c975588b039f96b5de699b30cf645c1860f9f9475129718a0ee6ee3</citedby><cites>FETCH-LOGICAL-c357t-c9c21fda83c975588b039f96b5de699b30cf645c1860f9f9475129718a0ee6ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2020.1869746$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2020.1869746$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Shen, Shi</creatorcontrib><creatorcontrib>Cheng, Changxiu</creatorcontrib><creatorcontrib>Su, Kai</creatorcontrib><creatorcontrib>Zhang, Xiangxue</creatorcontrib><title>A topic model based framework for identifying the distribution of demand for relief supplies using social media data</title><title>International journal of geographical information science : IJGIS</title><description>Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand for relief supplies and provides a way to obtain information on disaster areas. Therefore, we present a topic model-based framework and establish a demand dictionary and a gazetteer that aims to identify the spatial distribution of the demand for relief supplies by using social media data. Taking the 2013 Typhoon Haiyan (also called Yolanda) as a case study, we identify the potential topics of tweets with the biterm topic model, screen the tweets related to demands, and obtain the demand and location information from tweets to study the distribution of the relief supplies needs. The results show that, based on the demand dictionary, a gazetteer and the biterm topic model, the effective demand for relief supplies can be extracted from tweets. The proposed framework is feasible for the identification of accurate demand information and its distribution. Further, this framework can be applied to other types of disaster responses and can facilitate relief operations.</description><subject>btm</subject><subject>Demand for relief supplies</subject><subject>emergency management</subject><subject>nature disaster</subject><subject>social media</subject><subject>twitter</subject><issn>1365-8816</issn><issn>1362-3087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhRdRsNQ-gpAX2JpsmmxyZyn-QcEbvQ7ZZKLB3c2SpEjf3mytt17NcGbOgfNV1S3Ba4IFviOUMyEIXze4KZLgst3wi2pR9KamWLSXp53V89N1tUrJd7ihQgrRskWVtyiHyRs0BAs96nQCi1zUA3yH-IVciMhbGLN3Rz9-oPwJyPqUo-8O2YcRBYcsDHq0p9cIvQeH0mGaypLQIc2mFIzXPRrAeo2szvqmunK6T7A6z2X1_vjwtnuu969PL7vtvjaUtbk20jTEWS2okS0rLTtMpZO8Yxa4lB3FxvENM6U0duWwaRlpZEuExgAcgC4r9ptrYkgpglNT9IOOR0WwmumpP3pqpqfO9Irv_tfnx9Jq0AVFb1XWxz7EwmY0Pin6f8QPSFt4bQ</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Zhang, Ting</creator><creator>Shen, Shi</creator><creator>Cheng, Changxiu</creator><creator>Su, Kai</creator><creator>Zhang, Xiangxue</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211102</creationdate><title>A topic model based framework for identifying the distribution of demand for relief supplies using social media data</title><author>Zhang, Ting ; Shen, Shi ; Cheng, Changxiu ; Su, Kai ; Zhang, Xiangxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-c9c21fda83c975588b039f96b5de699b30cf645c1860f9f9475129718a0ee6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>btm</topic><topic>Demand for relief supplies</topic><topic>emergency management</topic><topic>nature disaster</topic><topic>social media</topic><topic>twitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Shen, Shi</creatorcontrib><creatorcontrib>Cheng, Changxiu</creatorcontrib><creatorcontrib>Su, Kai</creatorcontrib><creatorcontrib>Zhang, Xiangxue</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ting</au><au>Shen, Shi</au><au>Cheng, Changxiu</au><au>Su, Kai</au><au>Zhang, Xiangxue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A topic model based framework for identifying the distribution of demand for relief supplies using social media data</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2021-11-02</date><risdate>2021</risdate><volume>35</volume><issue>11</issue><spage>2216</spage><epage>2237</epage><pages>2216-2237</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><abstract>Natural disasters have caused substantial economic losses and numerous casualties. The demand analysis of relief supplies is the premise and basis for efficient relief operations after disasters. With the widespread use of social media, it has become a vital channel for people to report their demand for relief supplies and provides a way to obtain information on disaster areas. Therefore, we present a topic model-based framework and establish a demand dictionary and a gazetteer that aims to identify the spatial distribution of the demand for relief supplies by using social media data. Taking the 2013 Typhoon Haiyan (also called Yolanda) as a case study, we identify the potential topics of tweets with the biterm topic model, screen the tweets related to demands, and obtain the demand and location information from tweets to study the distribution of the relief supplies needs. The results show that, based on the demand dictionary, a gazetteer and the biterm topic model, the effective demand for relief supplies can be extracted from tweets. The proposed framework is feasible for the identification of accurate demand information and its distribution. Further, this framework can be applied to other types of disaster responses and can facilitate relief operations.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2020.1869746</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2021-11, Vol.35 (11), p.2216-2237
issn 1365-8816
1362-3087
language eng
recordid cdi_crossref_primary_10_1080_13658816_2020_1869746
source Taylor & Francis Journals Complete; Alma/SFX Local Collection
subjects btm
Demand for relief supplies
emergency management
nature disaster
social media
twitter
title A topic model based framework for identifying the distribution of demand for relief supplies using social media data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20topic%20model%20based%20framework%20for%20identifying%20the%20distribution%20of%20demand%20for%20relief%20supplies%20using%20social%20media%20data&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Zhang,%20Ting&rft.date=2021-11-02&rft.volume=35&rft.issue=11&rft.spage=2216&rft.epage=2237&rft.pages=2216-2237&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2020.1869746&rft_dat=%3Ccrossref_infor%3E10_1080_13658816_2020_1869746%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true