A data model for moving regions of fixed shape in databases

Moving object databases are designed to store and process spatial and temporal object data. An especially useful moving object type is a moving region, which consists of one or more moving polygons suitable for modeling the spread of forest fires, the movement of clouds, spread of diseases and many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2018-09, Vol.32 (9), p.1737-1769
Hauptverfasser: Heinz, Florian, Güting, Ralf Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Moving object databases are designed to store and process spatial and temporal object data. An especially useful moving object type is a moving region, which consists of one or more moving polygons suitable for modeling the spread of forest fires, the movement of clouds, spread of diseases and many other real-world phenomena. Previous implementations usually allow a changing shape of the region during the movement; however, the necessary restrictions on this model result in an inaccurate interpolation of rotating objects. In this paper, we present an alternative approach for moving and rotating regions of fixed shape, called Fixed Moving Regions, which provide a significantly better model for a wide range of applications like modeling the movement of oil tankers, icebergs and other rigid structures. Furthermore, we describe and implement several useful operations on this new object type to enable a database system to solve many real-world problems, as for example collision tests, projections and intersections, much more accurate than with other models. Based on this research, we also implemented a library for easy integration into moving objects database systems, as for example the DBMS Secondo (1) (2) developed at the FernUniversität in Hagen.
ISSN:1365-8816
1365-8824
1362-3087
DOI:10.1080/13658816.2018.1458103