Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs
Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ab...
Gespeichert in:
Veröffentlicht in: | International journal of geographical information science : IJGIS 2012-03, Vol.26 (3), p.441-468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 3 |
container_start_page | 441 |
container_title | International journal of geographical information science : IJGIS |
container_volume | 26 |
creator | Sierra, R. Stephens, C. R. |
description | Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies. |
doi_str_mv | 10.1080/13658816.2011.594799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2011_594799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599145131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElXpH7Cw2Kf4mTgrhKrykCqxgbU1Tp02NLWD7Qjy97gEtqxmNDp3pHuy7JrgJcES3xJWCClJsaSYkKWoeFlVZ9ksnWnOsCzPf3aRn5jLbBFCqzFlspKyFLPssP7qO-chOj8isNCNoQ3INSjuDWptNN6bDmLrbEDaxE9jLKpd3rkaotki7VxnwKLQJwY61BiIgzcBDaG1O2RTwvkD2nno9-Equ2igC2bxO-fZ28P6dfWUb14en1f3m7xmjMecNZQTLsqikkKQOrXCuBBcEiEoYI0LLDkXdYkZBa5JkSwUUPOSaq0NBc3m2c30t_fuYzAhqnc3-NQtqIoKIopkIkF8gmrvQvCmUb1vj-BHRbA6iVV_YtVJrJrEptjdFGtt4_wRUr1uqyKMSWLjwdZtUOzfD99dc3-W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925156816</pqid></control><display><type>article</type><title>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</title><source>Taylor & Francis</source><source>Alma/SFX Local Collection</source><creator>Sierra, R. ; Stephens, C. R.</creator><creatorcontrib>Sierra, R. ; Stephens, C. R.</creatorcontrib><description>Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2011.594799</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>boolean spatial features ; Complex systems ; Data mining ; Epidemics ; exploratory analysis ; Geographic information science ; geovisual analytics ; Graph theory ; modifiable areal unit problem ; network visualisation ; spatial data mining ; visual exploration</subject><ispartof>International journal of geographical information science : IJGIS, 2012-03, Vol.26 (3), p.441-468</ispartof><rights>Copyright Taylor & Francis Group, LLC 2012</rights><rights>Copyright Taylor & Francis Group 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</citedby><cites>FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2011.594799$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2011.594799$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Sierra, R.</creatorcontrib><creatorcontrib>Stephens, C. R.</creatorcontrib><title>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</title><title>International journal of geographical information science : IJGIS</title><description>Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies.</description><subject>boolean spatial features</subject><subject>Complex systems</subject><subject>Data mining</subject><subject>Epidemics</subject><subject>exploratory analysis</subject><subject>Geographic information science</subject><subject>geovisual analytics</subject><subject>Graph theory</subject><subject>modifiable areal unit problem</subject><subject>network visualisation</subject><subject>spatial data mining</subject><subject>visual exploration</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElXpH7Cw2Kf4mTgrhKrykCqxgbU1Tp02NLWD7Qjy97gEtqxmNDp3pHuy7JrgJcES3xJWCClJsaSYkKWoeFlVZ9ksnWnOsCzPf3aRn5jLbBFCqzFlspKyFLPssP7qO-chOj8isNCNoQ3INSjuDWptNN6bDmLrbEDaxE9jLKpd3rkaotki7VxnwKLQJwY61BiIgzcBDaG1O2RTwvkD2nno9-Equ2igC2bxO-fZ28P6dfWUb14en1f3m7xmjMecNZQTLsqikkKQOrXCuBBcEiEoYI0LLDkXdYkZBa5JkSwUUPOSaq0NBc3m2c30t_fuYzAhqnc3-NQtqIoKIopkIkF8gmrvQvCmUb1vj-BHRbA6iVV_YtVJrJrEptjdFGtt4_wRUr1uqyKMSWLjwdZtUOzfD99dc3-W</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Sierra, R.</creator><creator>Stephens, C. R.</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201203</creationdate><title>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</title><author>Sierra, R. ; Stephens, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>boolean spatial features</topic><topic>Complex systems</topic><topic>Data mining</topic><topic>Epidemics</topic><topic>exploratory analysis</topic><topic>Geographic information science</topic><topic>geovisual analytics</topic><topic>Graph theory</topic><topic>modifiable areal unit problem</topic><topic>network visualisation</topic><topic>spatial data mining</topic><topic>visual exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sierra, R.</creatorcontrib><creatorcontrib>Stephens, C. R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sierra, R.</au><au>Stephens, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2012-03</date><risdate>2012</risdate><volume>26</volume><issue>3</issue><spage>441</spage><epage>468</epage><pages>441-468</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/13658816.2011.594799</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8816 |
ispartof | International journal of geographical information science : IJGIS, 2012-03, Vol.26 (3), p.441-468 |
issn | 1365-8816 1362-3087 1365-8824 |
language | eng |
recordid | cdi_crossref_primary_10_1080_13658816_2011_594799 |
source | Taylor & Francis; Alma/SFX Local Collection |
subjects | boolean spatial features Complex systems Data mining Epidemics exploratory analysis Geographic information science geovisual analytics Graph theory modifiable areal unit problem network visualisation spatial data mining visual exploration |
title | Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%20analysis%20of%20the%20interrelations%20between%20co-located%20boolean%20spatial%20features%20using%20network%20graphs&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Sierra,%20R.&rft.date=2012-03&rft.volume=26&rft.issue=3&rft.spage=441&rft.epage=468&rft.pages=441-468&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2011.594799&rft_dat=%3Cproquest_cross%3E2599145131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925156816&rft_id=info:pmid/&rfr_iscdi=true |