Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs

Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2012-03, Vol.26 (3), p.441-468
Hauptverfasser: Sierra, R., Stephens, C. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 3
container_start_page 441
container_title International journal of geographical information science : IJGIS
container_volume 26
creator Sierra, R.
Stephens, C. R.
description Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies.
doi_str_mv 10.1080/13658816.2011.594799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658816_2011_594799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599145131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElXpH7Cw2Kf4mTgrhKrykCqxgbU1Tp02NLWD7Qjy97gEtqxmNDp3pHuy7JrgJcES3xJWCClJsaSYkKWoeFlVZ9ksnWnOsCzPf3aRn5jLbBFCqzFlspKyFLPssP7qO-chOj8isNCNoQ3INSjuDWptNN6bDmLrbEDaxE9jLKpd3rkaotki7VxnwKLQJwY61BiIgzcBDaG1O2RTwvkD2nno9-Equ2igC2bxO-fZ28P6dfWUb14en1f3m7xmjMecNZQTLsqikkKQOrXCuBBcEiEoYI0LLDkXdYkZBa5JkSwUUPOSaq0NBc3m2c30t_fuYzAhqnc3-NQtqIoKIopkIkF8gmrvQvCmUb1vj-BHRbA6iVV_YtVJrJrEptjdFGtt4_wRUr1uqyKMSWLjwdZtUOzfD99dc3-W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925156816</pqid></control><display><type>article</type><title>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</title><source>Taylor &amp; Francis</source><source>Alma/SFX Local Collection</source><creator>Sierra, R. ; Stephens, C. R.</creator><creatorcontrib>Sierra, R. ; Stephens, C. R.</creatorcontrib><description>Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1362-3087</identifier><identifier>EISSN: 1365-8824</identifier><identifier>DOI: 10.1080/13658816.2011.594799</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>boolean spatial features ; Complex systems ; Data mining ; Epidemics ; exploratory analysis ; Geographic information science ; geovisual analytics ; Graph theory ; modifiable areal unit problem ; network visualisation ; spatial data mining ; visual exploration</subject><ispartof>International journal of geographical information science : IJGIS, 2012-03, Vol.26 (3), p.441-468</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor &amp; Francis Group 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</citedby><cites>FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658816.2011.594799$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658816.2011.594799$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Sierra, R.</creatorcontrib><creatorcontrib>Stephens, C. R.</creatorcontrib><title>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</title><title>International journal of geographical information science : IJGIS</title><description>Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies.</description><subject>boolean spatial features</subject><subject>Complex systems</subject><subject>Data mining</subject><subject>Epidemics</subject><subject>exploratory analysis</subject><subject>Geographic information science</subject><subject>geovisual analytics</subject><subject>Graph theory</subject><subject>modifiable areal unit problem</subject><subject>network visualisation</subject><subject>spatial data mining</subject><subject>visual exploration</subject><issn>1365-8816</issn><issn>1362-3087</issn><issn>1365-8824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElXpH7Cw2Kf4mTgrhKrykCqxgbU1Tp02NLWD7Qjy97gEtqxmNDp3pHuy7JrgJcES3xJWCClJsaSYkKWoeFlVZ9ksnWnOsCzPf3aRn5jLbBFCqzFlspKyFLPssP7qO-chOj8isNCNoQ3INSjuDWptNN6bDmLrbEDaxE9jLKpd3rkaotki7VxnwKLQJwY61BiIgzcBDaG1O2RTwvkD2nno9-Equ2igC2bxO-fZ28P6dfWUb14en1f3m7xmjMecNZQTLsqikkKQOrXCuBBcEiEoYI0LLDkXdYkZBa5JkSwUUPOSaq0NBc3m2c30t_fuYzAhqnc3-NQtqIoKIopkIkF8gmrvQvCmUb1vj-BHRbA6iVV_YtVJrJrEptjdFGtt4_wRUr1uqyKMSWLjwdZtUOzfD99dc3-W</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Sierra, R.</creator><creator>Stephens, C. R.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201203</creationdate><title>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</title><author>Sierra, R. ; Stephens, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-3f241457698551c0110065481552a0b0608445c7032a4b161086ac472bbbe2ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>boolean spatial features</topic><topic>Complex systems</topic><topic>Data mining</topic><topic>Epidemics</topic><topic>exploratory analysis</topic><topic>Geographic information science</topic><topic>geovisual analytics</topic><topic>Graph theory</topic><topic>modifiable areal unit problem</topic><topic>network visualisation</topic><topic>spatial data mining</topic><topic>visual exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sierra, R.</creatorcontrib><creatorcontrib>Stephens, C. R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sierra, R.</au><au>Stephens, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2012-03</date><risdate>2012</risdate><volume>26</volume><issue>3</issue><spage>441</spage><epage>468</epage><pages>441-468</pages><issn>1365-8816</issn><eissn>1362-3087</eissn><eissn>1365-8824</eissn><abstract>Visual data mining of spatial data is a challenging task. As exploratory analysis is fundamental, it is beneficial to explore the data using different potential visualisations. In this article, we propose and analyse network graphs as a useful visualisation tool to mine spatial data. Due to their ability to represent complex systems of relationships in a visually insightful and intuitive way, network graphs offer a rich structure that has been recognised in many fields as a powerful visual representation. However, they have not been sufficiently exploited in spatial data mining, where they have principally been used on data that come with an explicit pre-specified network graph structure. This research presents a methodology with which to infer relationship network graphs for large collections of boolean spatial features. The methodology consists of four principal stages: (1) define a co-location model, (2) select the type of co-association of interest, (3) compute statistical diagnostics for these co-associations and (4) construct and visualise a network graph of the statistic from step (3). We illustrate the potential usefulness of the methodology using an example taken from an ecological setting. Specifically, we use network graphs to understand and analyse the potential interactions between potential vector and reservoir species that enable the propagation of leishmaniasis, a disease transmitted by the bite of sandflies.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/13658816.2011.594799</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2012-03, Vol.26 (3), p.441-468
issn 1365-8816
1362-3087
1365-8824
language eng
recordid cdi_crossref_primary_10_1080_13658816_2011_594799
source Taylor & Francis; Alma/SFX Local Collection
subjects boolean spatial features
Complex systems
Data mining
Epidemics
exploratory analysis
Geographic information science
geovisual analytics
Graph theory
modifiable areal unit problem
network visualisation
spatial data mining
visual exploration
title Exploratory analysis of the interrelations between co-located boolean spatial features using network graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploratory%20analysis%20of%20the%20interrelations%20between%20co-located%20boolean%20spatial%20features%20using%20network%20graphs&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Sierra,%20R.&rft.date=2012-03&rft.volume=26&rft.issue=3&rft.spage=441&rft.epage=468&rft.pages=441-468&rft.issn=1365-8816&rft.eissn=1362-3087&rft_id=info:doi/10.1080/13658816.2011.594799&rft_dat=%3Cproquest_cross%3E2599145131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925156816&rft_id=info:pmid/&rfr_iscdi=true