Sparse Grids: a new predictive modelling method for the analysis of geographic data

We introduce in this paper a new predictive modelling method to analyse geographic data known as sparse grids. The sparse grids method has been developed for data-mining applications. It is a machine-learning approach to data analysis and has great applicability to the analysis and understanding of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of geographical information science : IJGIS 2005-03, Vol.19 (3), p.267-292
Hauptverfasser: Laffan, S. W., Nielsen, O. M., Silcock, H., Hegland, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 3
container_start_page 267
container_title International journal of geographical information science : IJGIS
container_volume 19
creator Laffan, S. W.
Nielsen, O. M.
Silcock, H.
Hegland, M.
description We introduce in this paper a new predictive modelling method to analyse geographic data known as sparse grids. The sparse grids method has been developed for data-mining applications. It is a machine-learning approach to data analysis and has great applicability to the analysis and understanding of geographic data and processes. Sparse grids are a subset of grid-based predictive modelling approaches. The advantages they have over other grid-based methods are that they use fewer parameters and are less susceptible to the curse of dimensionality. These mean that they can be applied to many geographic problems and are readily adapted to the analysis of geographically local samples. We demonstrate the utility of the sparse grids system using a large and spatially extensive data set of regolith samples from Weipa, Australia. We apply both global and local analyses to find relationships between the regolith data and a set of geomorphometric, hydrologic and spectral variables. The results of the global analyses are much better than those generated using an artificial neural network, and the local analysis results are better than those generated using moving window regression for the same analysis window size. The sparse grids system provides a potentially powerful tool for the analysis and understanding of geographic processes and relationships.
doi_str_mv 10.1080/13658810512331319118
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_13658810512331319118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_13658810512331319118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e1cf08574b2e98c525748f1c42ef1195968b99dff9a42b01c7e52a45ba1555bb3</originalsourceid><addsrcrecordid>eNqFkMFKAzEURYMoWGr_wEV-YDQvmbRJNyJFq1BwUV0PbzJJG5iZDEmw9u9tqbgqdPUuD86Bewm5B_YATLFHEFOpFDAJXAgQoAHUFRkd34VSvLz-zzC9JZOUfM24UFqpmRyR9XrAmCxdRt-kOUXa2x0dom28yf7b0i40tm19v6GdzdvQUBcizVtLscd2n3yiwdGNDZuIw9Yb2mDGO3LjsE128nfH5Ov15XPxVqw-lu-L51VhhFS5sGAcU3JW1txqZSQ_ROXAlNw6AC31VNVaN85pLHnNwMys5FjKGkFKWddiTMqT18SQUrSuGqLvMO4rYNVxm-rcNgfs6YT5_lCmw12IbVNl3Lchuoi98akSFwzzi4ZzYJV_svgFyBt9dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sparse Grids: a new predictive modelling method for the analysis of geographic data</title><source>Taylor &amp; Francis Online</source><source>Alma/SFX Local Collection</source><creator>Laffan, S. W. ; Nielsen, O. M. ; Silcock, H. ; Hegland, M.</creator><creatorcontrib>Laffan, S. W. ; Nielsen, O. M. ; Silcock, H. ; Hegland, M.</creatorcontrib><description>We introduce in this paper a new predictive modelling method to analyse geographic data known as sparse grids. The sparse grids method has been developed for data-mining applications. It is a machine-learning approach to data analysis and has great applicability to the analysis and understanding of geographic data and processes. Sparse grids are a subset of grid-based predictive modelling approaches. The advantages they have over other grid-based methods are that they use fewer parameters and are less susceptible to the curse of dimensionality. These mean that they can be applied to many geographic problems and are readily adapted to the analysis of geographically local samples. We demonstrate the utility of the sparse grids system using a large and spatially extensive data set of regolith samples from Weipa, Australia. We apply both global and local analyses to find relationships between the regolith data and a set of geomorphometric, hydrologic and spectral variables. The results of the global analyses are much better than those generated using an artificial neural network, and the local analysis results are better than those generated using moving window regression for the same analysis window size. The sparse grids system provides a potentially powerful tool for the analysis and understanding of geographic processes and relationships.</description><identifier>ISSN: 1365-8816</identifier><identifier>EISSN: 1365-8824</identifier><identifier>EISSN: 1362-3087</identifier><identifier>DOI: 10.1080/13658810512331319118</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>bauxite ; Geographic data ; Predictive modelling ; Sparse Grids ; Spatial analysis</subject><ispartof>International journal of geographical information science : IJGIS, 2005-03, Vol.19 (3), p.267-292</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e1cf08574b2e98c525748f1c42ef1195968b99dff9a42b01c7e52a45ba1555bb3</citedby><cites>FETCH-LOGICAL-c358t-e1cf08574b2e98c525748f1c42ef1195968b99dff9a42b01c7e52a45ba1555bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/13658810512331319118$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/13658810512331319118$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,59649,60438</link.rule.ids></links><search><creatorcontrib>Laffan, S. W.</creatorcontrib><creatorcontrib>Nielsen, O. M.</creatorcontrib><creatorcontrib>Silcock, H.</creatorcontrib><creatorcontrib>Hegland, M.</creatorcontrib><title>Sparse Grids: a new predictive modelling method for the analysis of geographic data</title><title>International journal of geographical information science : IJGIS</title><description>We introduce in this paper a new predictive modelling method to analyse geographic data known as sparse grids. The sparse grids method has been developed for data-mining applications. It is a machine-learning approach to data analysis and has great applicability to the analysis and understanding of geographic data and processes. Sparse grids are a subset of grid-based predictive modelling approaches. The advantages they have over other grid-based methods are that they use fewer parameters and are less susceptible to the curse of dimensionality. These mean that they can be applied to many geographic problems and are readily adapted to the analysis of geographically local samples. We demonstrate the utility of the sparse grids system using a large and spatially extensive data set of regolith samples from Weipa, Australia. We apply both global and local analyses to find relationships between the regolith data and a set of geomorphometric, hydrologic and spectral variables. The results of the global analyses are much better than those generated using an artificial neural network, and the local analysis results are better than those generated using moving window regression for the same analysis window size. The sparse grids system provides a potentially powerful tool for the analysis and understanding of geographic processes and relationships.</description><subject>bauxite</subject><subject>Geographic data</subject><subject>Predictive modelling</subject><subject>Sparse Grids</subject><subject>Spatial analysis</subject><issn>1365-8816</issn><issn>1365-8824</issn><issn>1362-3087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEURYMoWGr_wEV-YDQvmbRJNyJFq1BwUV0PbzJJG5iZDEmw9u9tqbgqdPUuD86Bewm5B_YATLFHEFOpFDAJXAgQoAHUFRkd34VSvLz-zzC9JZOUfM24UFqpmRyR9XrAmCxdRt-kOUXa2x0dom28yf7b0i40tm19v6GdzdvQUBcizVtLscd2n3yiwdGNDZuIw9Yb2mDGO3LjsE128nfH5Ov15XPxVqw-lu-L51VhhFS5sGAcU3JW1txqZSQ_ROXAlNw6AC31VNVaN85pLHnNwMys5FjKGkFKWddiTMqT18SQUrSuGqLvMO4rYNVxm-rcNgfs6YT5_lCmw12IbVNl3Lchuoi98akSFwzzi4ZzYJV_svgFyBt9dw</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Laffan, S. W.</creator><creator>Nielsen, O. M.</creator><creator>Silcock, H.</creator><creator>Hegland, M.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050301</creationdate><title>Sparse Grids: a new predictive modelling method for the analysis of geographic data</title><author>Laffan, S. W. ; Nielsen, O. M. ; Silcock, H. ; Hegland, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e1cf08574b2e98c525748f1c42ef1195968b99dff9a42b01c7e52a45ba1555bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>bauxite</topic><topic>Geographic data</topic><topic>Predictive modelling</topic><topic>Sparse Grids</topic><topic>Spatial analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laffan, S. W.</creatorcontrib><creatorcontrib>Nielsen, O. M.</creatorcontrib><creatorcontrib>Silcock, H.</creatorcontrib><creatorcontrib>Hegland, M.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of geographical information science : IJGIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laffan, S. W.</au><au>Nielsen, O. M.</au><au>Silcock, H.</au><au>Hegland, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Grids: a new predictive modelling method for the analysis of geographic data</atitle><jtitle>International journal of geographical information science : IJGIS</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>19</volume><issue>3</issue><spage>267</spage><epage>292</epage><pages>267-292</pages><issn>1365-8816</issn><eissn>1365-8824</eissn><eissn>1362-3087</eissn><abstract>We introduce in this paper a new predictive modelling method to analyse geographic data known as sparse grids. The sparse grids method has been developed for data-mining applications. It is a machine-learning approach to data analysis and has great applicability to the analysis and understanding of geographic data and processes. Sparse grids are a subset of grid-based predictive modelling approaches. The advantages they have over other grid-based methods are that they use fewer parameters and are less susceptible to the curse of dimensionality. These mean that they can be applied to many geographic problems and are readily adapted to the analysis of geographically local samples. We demonstrate the utility of the sparse grids system using a large and spatially extensive data set of regolith samples from Weipa, Australia. We apply both global and local analyses to find relationships between the regolith data and a set of geomorphometric, hydrologic and spectral variables. The results of the global analyses are much better than those generated using an artificial neural network, and the local analysis results are better than those generated using moving window regression for the same analysis window size. The sparse grids system provides a potentially powerful tool for the analysis and understanding of geographic processes and relationships.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/13658810512331319118</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1365-8816
ispartof International journal of geographical information science : IJGIS, 2005-03, Vol.19 (3), p.267-292
issn 1365-8816
1365-8824
1362-3087
language eng
recordid cdi_crossref_primary_10_1080_13658810512331319118
source Taylor & Francis Online; Alma/SFX Local Collection
subjects bauxite
Geographic data
Predictive modelling
Sparse Grids
Spatial analysis
title Sparse Grids: a new predictive modelling method for the analysis of geographic data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T16%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Grids:%20a%20new%20predictive%20modelling%20method%20for%20the%20analysis%20of%20geographic%20data&rft.jtitle=International%20journal%20of%20geographical%20information%20science%20:%20IJGIS&rft.au=Laffan,%20S.%20W.&rft.date=2005-03-01&rft.volume=19&rft.issue=3&rft.spage=267&rft.epage=292&rft.pages=267-292&rft.issn=1365-8816&rft.eissn=1365-8824&rft_id=info:doi/10.1080/13658810512331319118&rft_dat=%3Ccrossref_infor%3E10_1080_13658810512331319118%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true